

EXCELSYS COOLX®600 Series

FANLESS, NATURAL CONVECTION-COOLED MODULAR POWER SUPPLY

Advanced Energy's Excelsys CoolX600 Power Supply Designers Manual has been prepared by Advanced Energy experts to assist qualified engineers and technicians in understanding the correct system design practices necessary to deliver an incredible 600 W without fan-assisted cooling from a very compact package.

AT A GLANCE

CX06S CX06M

Total Power 600 W 600 W

Slots 4 4

Cooling

No fan featured convection-cooled

Dimensions

 $215.9 \times 114.3 \times 39.1 \text{ mm}$ $8.5 \times 4.5 \times 1.75 \text{ inch}$

Certifications

Medical

- IEC60601-1 3rd edition IEC60601-1-2 4th edition (EMC)
- 2 MOPP
- Dual fused

Industrial

- IEC60950, IEC62368-1
- SEMI F47 (Vin > 180Vac)

Defense/Aero

■ MIL-STD-810G

TABLE OF CONTENTS

Section	1	Product Descriptions	4
	1.1	Overview of CoolX600	4
	1.2	Theory of Operation	<u>5</u>
<u>Section</u>	2	Model/Ordering Information	7
	2.1	CoolX Nomenclature	7
	2.2	Output Modules	8
	<u>2.3</u>	Selecting & Ordering Configured CoolX	9
<u>Section</u>	3	Electrical Specifications	10
	<u>3.1</u>	Input Specifications	10
	<u>3.2</u>	General Output Specifications	11
	3.3	Standard Modules (CmA-CmD) Output Specifications	12
	<u>3.4</u>	High Power Modules (CmE-CmF) Output Specifications	19
	3.5	Dual Modules (CmG-CmH) Output Specifications	26
	3.6	Wide Trim Modules (CmA-W01 to CmD-W01) Output Specifications	32
	<u>3.7</u>	High Voltage Module (CmK) Output Specifications	39
	3.8	Auxiliary Output Specifications	46
	<u>3.9</u>	Power Ratings	48
	<u>3.10</u>	Efficiency Curve at 240V input	49
<u>Section</u>	4	Mechanical Specifications	50
	<u>4.1</u>	Mechanical Information	50
	<u>4.2</u>	Connectors Definition and Mating Connector	51
<u>Section</u>	5	Environmental Specifications	58
	<u>5.1</u>	Environmental Parameters	<u>58</u>
	<u>5.2</u>	EMC Characteristics	<u>59</u>
	5.3	Reliability	61

TABLE OF CONTENTS

Section 6	Cofety Approval / Contification	63
	Safety Approval / Certification Safety Approvals	
0.1	Salety Applovals	03
Section 7	Operation - Power, Control and Communication	64
<u>7.1</u>	CoolX600 Operation	64
7.2	Input Power	64
<u>7.3</u>	System/Global Output/ Signal	64
<u>7.4</u>	Module Operation	69
<u>7.5</u>	Module Output/Signal	70
<u>7.6</u>	Power Limit	82
Section 8	Installation	83
<u>8.1</u>	Installation Considerations	83
8.2	Configuration Considerations	84
Section 9	Application Note	85
9.1	Series Connection of CoolMod outputs	85
9.2	Parallel Connection for CoolMods	86
9.3	CoolMod Start-Up and Shutdown	88
9.4	Over Voltage Protection (OVP)	88
9.5	Ripple and Noise Measurement	89
Section 10	Record Of Revision And Change	91

SECTION 1 PRODUCT DESCRIPTIONS

1.1 Overview of CoolX600

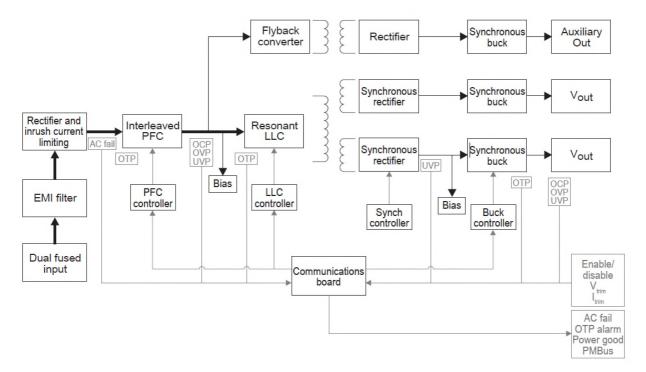
The CoolX600 unit is a convection-cooled modular power supply that can provide 600 W with no fan. With an optimum configuration, a CoolX unit can achieve an efficiency of up to 93%.

The series comprises two base models: the CX06S for industrial applications and the CX06M for medical applications. A complete power supply consists of a CoolPac chassis populated with up to four CoolMod modules. Each module provides one or two isolated DC outputs, and outputs can range from 1 V to 200 V. Each module output voltage can be individually trimmed to its required setpoint.

You can connect modules in parallel to increase output current, or in series to increase output voltage (subject to staying within isolation ratings and giving due consideration to any SELV requirements). You can connect CoolPac chassis in parallel for higher power and N+1 redundancy applications. For more information, contact AF Global Services.

A signal interface on each module provides control and output sequencing capability and status indicators. Alternatively, digital control and monitoring is accessible through the PMBus® interface.

CoolX600 Power Supply



SECTION 1 PRODUCT DESCRIPTIONS CON'T

1.2 Theory of Operation

The CoolX platform comprises a CoolPac chassis and CoolMod DC output modules, all selected to deliver the volts and amps required by the system designer. An operational block diagram follows:

SECTION 1 PRODUCT DESCRIPTIONS CON'T

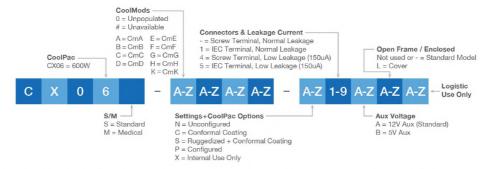
The chassis is an open-frame chassis containing circuitry for an offline, single-phase, AC front end; an EMI filter; and a customer interface and associated housekeeping circuits. Input AC mains voltage (L, N, and GND) is applied to either a screw terminal input block or an IEC type input connector (optional), and then through an EMI filter designed to meet EN55022 Class B. Some applications might require an external ferrite on cabling to meet Class B radiated EMI. Please contact Technical Support for recommendations.

For medical applications, the EMI filter also ensures that the power supply meets the low earth leakage current requirements of EN60601-1 3rd Edition. All modules provide medical isolation of 4000 VAC (2 x MOPP) from input to output and extended isolation of 1850 VAC from output to earth.

A 24 W auxiliary, always-on, isolated bias supply of 12 VDC or 5 VDC (optional) is provided for peripheral use. This bias supply also has medical isolation of 4000 VAC (2 x MOPP).

Modules provide isolated DC outputs. These can be set to the required voltage setpoints by the user or factory as required. Each CoolMod has its own discrete Enable/Inhibit control, Voltage Adjust (Vtrim), Current limit adjust (ITRIM), and Remote Sense.

A configured CoolX600 has the following galvanic isolation barriers.


Isolation Barrier	Туре	Withstand Voltage
Input to Output	Reinforced (2 x MOPP)	4000Vac
Input to Case (GND)	Basic (1 x MOPP)	1850Vac
Output to Case (GND)	Basic (1 x MOPP)	1850Vac
Output to Output	Basic (1 x MOPP)	1850Vac
Output (V1) to Output (V2) - Dual	Functional	500Vac

SECTION 2 MODEL / ORDERING INFORMATION

2.1 **CoolX Nomenclature**

The CoolX600 user configurable power supply part-numbering system is described below.

N = Unconfigured indicates that all voltages are set to the nominal setpoint of each module and there are no parallel/series links fitted to the power supply.

*CmE or CmF High Power Module (3 slot module) can only occupy Slots B/C/D.

Model Name

CX06 = CoolX600

S/M (Standard of Medical CoolPac)

= Standard IEC62368-1

M = Medical IEC60601-1 3rd Edition

CoolMods - Output Modules (see section 2.2 for module details)

A = CmA - 5V/21A, 1slot G = CmG - 24V/3A + 24V/3A, 1slot = CmB - 12V/15A.1 slot H = CmH - 5V/6A + 24V/3A.1 slotВ C = CmC - 24V/8.3A, 1 slot $A^1 = CmA-W01 - 5V/21A, 1$ slot D = CmD - 48V/4.17A.1 slot $B^1 = CmB-W01 - 12V/15A.1 slot$ $C^1 = CmC-W01 - 24V/8.3A, 1 slot$ Ε = CmE - 24V/25A, 3 slots F = CmF - 48V/12.5A, 3 slots $D^1 = CmD-W01 - 48V/4.17A, 1$ slot Κ

= CmK - 200V/0.66A, 1 slot

0 Unpopulated

= Unavailable (two slots preceding E and F module - ie: ##E)

Options + Voltage Settings

Standard. No additional configuration. Nominal output voltages

= Configured, Preset, Voltage Adjustments, Series, Parallel Outputs

= When Wide Trim Module is used or other special configuration (Internal use only)

Auxiliary Voltage

= 12V/1.96A isolated Bias Supply Voltage

= 5V/4.7A isolated Bias Supply Voltage

Note 1: The wide trim modules CmA-W01 to CmD-W01 are variants of the standard modules CmA to CmD and will have the same module code in the part number nomenclature system, change "Option + Voltage Settings" code to "X" when a wide trim module is used.

SECTION 2 MODEL / ORDERING INFORMATION CON'T

2.2 Output Modules

Table 1 CoolX CoolMods Table									
		Output Voltage	Output Adjust Range	Maximum Current	Maximum Power				
Single Output Modules (1 Slot)									
CmA		5V	2.5-6.0V	21.0A	105W				
CmB ¹		12V	6.0-15.0V ²	15.0A	180W				
CmC		24V	15.0-28.0V	8.3A	200W				
CmD		48V	28.0-58.0V ³	4.16A	200W				
High Pow	er Modules	s (3 Slots)							
CmE ⁴		24V	24-25.2V	25.0A	550W*				
CmF ⁴		48V	48-50.4V	12.5A	550W*				
Dual Outp	out Module	s (1 Slot)							
CmG ⁵	V1	24V	3.0-30.0V	3.0A	90W				
Cilid	V2	24V	3.0-30.0V	3.0A	90W				
CmH ⁶	V1	5V	3.0-6.0V	6.0A	36W				
CITIE	V2	24V	3.0-30.0V	3.0A	90W				
Wide Trim	n Modules	(1 Slot)							
CmA-W01	L	5V	1.0-6.0V	21.0A	105W				
CmB-W01		12V	1.0-15.0V ²	15.0A	180W				
CmC-W01		24V	2.0-28.0V	8.33A	200W				
CmD-W01		48	3.0-58.0 ³	4.17A	200W				
Wide Trim	n Modules	(1 Slot)							
CmK ⁷		200V	175.0-205.0V	0.66A	132W				

- Note 1 Full dynamic specifications may not be met at full load when output voltage is trimmed above 13 V.
- Note 2 Max Trim 14 V when used with High Power Module in CoolPac case.
- Note 3 Max Trim 56 V when used with High Power Module in CoolPac case.
- Note 4 a) Only one High Power module (CmE or CmF) can be used per CoolPac.
 - b) During load transients starting from 0% load on the High Power modules, other modules in the CoolPac may experience an output voltage dynamic during the load change. Contact applications support for details or support.
- Note 5 For the CmG module the max combined power of both outputs is 120W.
- Note 6 For the CmH module the max combined power of both outputs is 100 W.
- Note 7 Max Power of coolPac is 550W when High Power Module is used
- Note 8 SEMI F47 compliant at input voltages > 180 Vac. Consult Advanced Energy for details.

SECTION 2 MODEL / ORDERING INFORMATION CON'T

2.3 Selecting & Ordering Configured CoolX

Configured CoolX600 power supplies may be specified and ordered using the part numbering system shown. At our configuration center, we will assemble the CoolX600 as specified by you accounting for slot preferences and also for preferred settings (Voltage/Series/Parallel etc.), and also incorporating any options required.

Configuration Example 1

Required power supply: 200-240Vac input, IEC62368-1 and IEC60950 approved

Outputs: 5V/10A, 24V/6A, 48V/4A

Auxiliary Bias Supply: 12V/1A

Solution: CoolX part number CX06S-ACD0-N-A specifies the following product:

CX06S—600 W IEC62368 approved

· Slot 1: CmA, 5 V/21 A module

Slot 2: CmC, 24 V/8.33 A module

Slot 3: CmD, 48 V/4.17 A module

· Slot 4: Empty

Option N: Nominal output voltage settings

· Option A: 12 V/1.97 A bias supply voltage

Configuration Example 2

Required power supply: 100-240Vac input, IEC60601-1 3rd edition approved

Outputs: 5V/10A, 24V/10A, 24V/11A

Auxiliary Bias Supply: 5V/4.7A

150 uA leakage current

Solution: CoolX part number CX06M-ABC0-P4B specifies the following product;

- · CX06M—600 W IEC60601-1 approved
- Slot 1: CmA, 5 V/10 A module
- · Slot 2: CmB. 12 V/15 A module
- · Slot 3: CmC, 24 V/8.33 A module
- Slot 4: Empty
- Option P: Preset required. Slot C and Slot D connected in parallel.
- Option 4: 150 uA leakage current
- Option B: 5 V/4.7 A bias supply voltage

3.1 **Input Specifications**

Table 2 Input Specifications						
Parameter	Condition	Symbol	Min	Тур	Max	Unit
Nominal Input Voltage, AC ¹	47 to 63Hz	V _{IN,AC}	100	-	264	Vac
Operating Input Voltage, AC ²	47 to 440Hz	V _{IN,AC}	85	-	264	Vac
Extended AC Operating Range	Maximum for 5 seconds	V _{IN,AC}	-	-	300	Vac
Operating Input Voltage, DC ³		V _{IN,DC}	120	-	300	Vdc
Maximum Input AC current	V _{IN,AC} = 90Vac P _O = 420W	I _{IN,max}	-	6	-	А
Harmonic Line Currents	All	THD	EI	V 61000-3	3-2, Class	А
Power Factor	$V_{IN,AC} = 120Vac$ $P_O = P_{O,max}$		0.98	-	-	
Undervoltage Lockout	Shutdown		74	-	81	Vac
Inrush Current	V _{IN,AC} = 230Vac	I _{IN,inrush}	-	-	25	А
	Normal Condition (High Line) V _{IN,AC} = 264Vac/60Hz	l _{leakage}	-	250	300	uA
Leakage Current to Earth Ground	Single Fault Condition (High Line) V _{IN,AC} = 264Vac/60Hz	l _{leakage}	-	400	600	uA
	Normal Condition (High Line) V _{IN,AC} = 264Vac/60Hz	I _{touch}	-	5	100	uA
Touch Current to Earth Ground	Single Fault Condition (High Line) V _{IN,AC} = 264Vac	I _{touch}	-	250	500	uA
Input Fuses Rating	Dual Fused (Line and Neutral) 500Vac		-	8	-	А
Operating Efficiency @ 25 °C	V _{IN,AC} = 230Vac, P _O = 600W with 3 x CmC CoolMods	η	-	93	-	%

Note 1 - Safety Approval

Note 3 - DC Operation not Safety Certified

Note 2 - Extended Frequency Range not Safety Certified

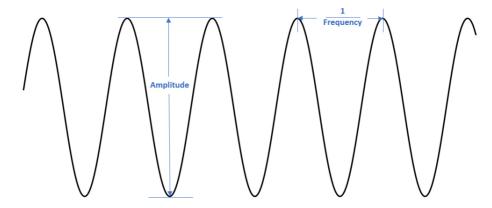
3.2 **General Output Specifications**

Table 3 Output Specifications									
Parameter	Condition	Symbol	Min	Тур	Max	Unit			
Maximum Output Power	Derate from 180Vac	P _{O,max}	-	-	600	W			
Minimum Load		I _{O,min}	0	-	-	А			
Remote Sense	Max line drop compensation (N/A in CmG, CmH and CmK)	Vo	-	-	0.5	Vdc			
Turn-On Delay	From AC Input From Global EN From CoolMod EN	T _{turn on}	-	- - -	1000 100 100	mS			
Hold Up Time	For nominal output voltages at full load	T_{holdup}	16	-	-	mS			
Overtemperature Protection	CmG, CmH latch off		Yes, Auto-Recovery						

Standard Modules (CmA-CmD) Output Specifications 3.3

Parameter	Module	Symbol	Min	Тур	Max	Unit
Output Voltage	CmA CmB CmC CmD	Vo	2.5 6 15 28	5 12 24 48	6 15 ¹ 28 58	Vdc
Factory Setting Accuracy	CmA CmB CmC CmD	$V_{O,factory}$	- - - -	- - - -	10 10 20 50	mV
Output Current ²	CmA CmB CmC CmD	I _{O,max}	- - -	- - - -	21 15 8.3 4.17	А
Output Power ³	CmA CmB CmC CmD	P _{O,max}	- - -	- - -	105 180 200 200	W
Capacitive Loading ⁴	CmA CmB CmC CmD	$C_{O,max}$	- - -	- - - -	20000 10000 8000 4700	uF

Note 1 - Full dynamic specifications may not be met at full load when output voltage is trimmed above 13 V.



Note 2 - Maximum output current to be derated by 10% when used in parallel.

Note 3 - Maximum output power is derated by 10% when a module is used in parallel. Maximum output power to be derated when CoolX is used in ambient temperatures greater than 40°C - see page 48 -Thermal Derating for further details.

Note 4 - Maximum capacitive load of the module to ensure monotonic startup (with no additional load applied). Higher capacitive loading is possible if non-monotonic startup is acceptable. Contact technical support for further details.

Ripple and Noise - CmA, CmB, CmC, CmD

Parameter	Module	Symbol	Min	Тур	Max	Unit
Output Ripple ¹	CmA CmB CmC CmD	$V_{O,ripple}$			100 150 240 480	mV
Output Ripple Frequency ²	All Modules	f	220	-	260	KHz

Note 1 - Amplitude of ripple measured at nominal voltage and at 20 MHz Bandwidth

Regulation-CmA, CmB, CmC, CmD

Parameter	Module	Symbol	Min	Тур	Max	Unit
Load Regulation 0-100% Load	CmA CmB CmC CmD	Vo	- - -	- - -	20 24 48 96	mV
Load Regulation - Paralleled ¹ 0-100% Load	CmA CmB CmC CmD	Vo	50 150 450 840	- - -	90 189 491 903	mV
Line Regulation 85 - 264 Vac	CmA CmB CmC CmD	Vo	- - -	- - - -	10 12 24 48	mV
Temperature Regulation ²	All Modules		-	-	0.02	%/°C

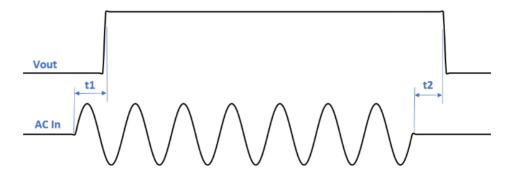
Note 1 - Load Regulation is softened in parallel mode to improve current share

Note 2 - Over ambient temperature change

Protective Limits - CmA, CmB, CmC, CmD

Parameter	Module	Symbol	Min	Тур	Max	Unit
Current Limit ¹	CmA CmB CmC CmD	I _{O,limit}	22 15.7 8.7 4.3	- - -	27.3 19.5 10.8 5.4	А
Short-Circuit Current Limit ² (RMS)	CmA CmB CmC CmD	I _{O,short}	- - -		10.5 7.5 4.2 2.1	А
Power Limit ³	CmA CmB CmC CmD	$P_{O,limit}$	110 190 210 210	- - - -	137 234 260 260	W
Overvoltage Protection ⁴	CmA CmB CmC CmD	V _O	7.5 17 32 62	- - -	9.6 21.0 37.0 69.6	V
Sense Lead Protection ⁵	All Modules		-	-	3.1	V

Note 1 - Constant Current Limit into Hiccup. Auto-Recovery

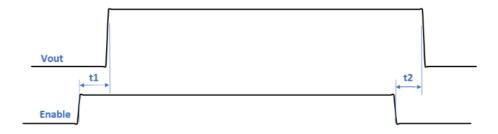

Note 2 - Auto-Recovery, Measured over 5 hiccup cycles.

Note 3 - Voltage Foldback into Hiccup, Auto-Recovery

Note 4 - Latch off

Note 5 - Hiccup, Auto-Recovery

Start-Up / Shut-Down - CmA, CmB, CmC, CmD



Parameter	Module	Symbol	Min	Тур	Max	Unit
Turn-On Delay ¹	All Modules	t1	-	-	1000	mS
Turn-Off Delay ²	All Modules	t2	16	-	-	mS

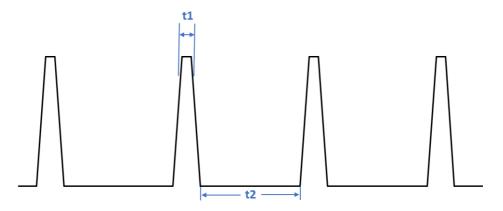
Note 1 - Time from application of Input AC to Output Voltage Regulation (t1)

Note 2 - From Loss of AC to Loss of Output Voltage Regulation - Nominal Voltage (t2)

Enable / Disable - CmA, CmB, CmC, CmD

Parameter	Module	Symbol	Min	Тур	Max	Unit
Enable Delay ¹	All Modules	t1	-	-	12	mS
Rise Time ²	All Modules		1	-	5	mS
Disable Delay ³	All Modules	t2	-	-	5	mS
Fall Time ⁴	All Modules		0.1	-	3	mS

Note 1 - Time from application of Enable signal to Output Voltage Regulation (t1)

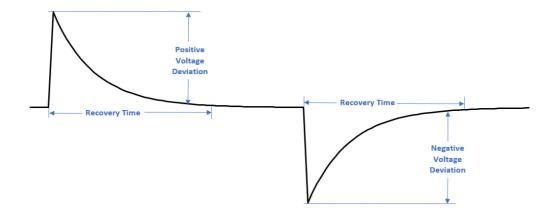

Note 2 - Measured from 10% - 90% of Vout

Note 3 - Time from application of Disable signal to loss of Output Voltage Regulation (t2)

Note 4 - Fully Loaded measured from 90% - 10% of Vout

Hiccup Characteristics - CmA, CmB, CmC, CmD

Parameter	Module	Symbol	Min	Тур	Max	Unit
Hiccup On-Time ¹	All Modules	t1	1	-	100	mS
Hiccup Off-Time ²	All Modules	t2	900	-	1200	mS
Short Circuit Hiccup Level ³	CmA CmB CmC CmD	$V_{O,short}$	1.0 3.5 7.2 14.3	- - -	2.0 5.7 9.6 19.8	V


Note 1 - Length of time output is on during hiccup (t1)

Note 2 - Length of time output is off during hiccup (t2)

Note 3 - Output voltage at which module enters hiccup protection.

Transient Response - CmA, CmB, CmC, CmD

Parameter	Module	Symbol	Min	Тур	Max	Unit
	CmA		-	-	0.3	
Transient Response, Voltage	CmB	Vo	-	-	0.48	V
Deviation ¹	CmC	U	-	-	0.96	
	CmD		-	-	0.96	
Transient Response, Recovery Time ¹	All Modules		-	-	500	uS
	CmA		-	-	0.6	
Transient Response, Voltage	CmB	\/	-	-	1.2	V
Deviation ²	CmC	V _O	-	-	1.8	V
	CmD		-	=	2.4	
Transient Response, Recovery Time ²	All Modules		-	-	1000	uS

Note 1 - Measured during 25% - 75% and 75% - 25% Step Load Changes

Note 2 - Measured during 10% - 100% and 100% - 10% Step Load Changes

Galvanic Isolation - CmA, CmB, CmC, CmD

Parameter		Module	Symbol	Min	Тур	Max	Unit
Input to Output	2 x MOPP	All Modules		4000	-	-	Vac
Output to Output	1 x MOPP	All Modules		1850	-	-	Vac

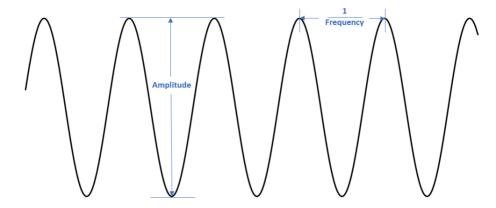
PMBusTM Communications - CmA, CmB, CmC, CmD

Standard modules can be monitored and controlled with the following PMBus Commands (for further details see the PMBusTM Manual available for download from the Advanced Energy website.

Command	Description							
		Module	Accuracy ¹	Resolution				
	The READ_VOUT command is	CmA	+/- 4%	6.6 mV				
READ_VOUT (0x8B)	used to return the output voltage measurement of the	CmB	+/- 4%	16.5 mV				
	selected (or paged) module	CmC	+/- 4%	44.3 mV				
		CmD	+/- 4%	82.4 mV				
		Module	Accuracy ²	Resolution				
	The READ_IOUT command is	CmA	+/- 4%	40 mA				
READ_IOUT (0x8C)	used to return the output current measurement of the	CmB	+/- 4%	29 mA				
	selected (or paged) module	CmC	+/- 4%	16 mA				
		CmD	+/- 4%	8 mA				
READ_TEMPERATURE_1 (0x8D)	The READ_TEMPERATURE_1 command is used to return the temperature measurement of the selected (or paged) module in Degrees Celsius. The accuracy of the READ_TEMPERATURE_1 command is +/- 10 °C, while its resolution is 1 °C.							
STATUS_WORD (0x79)	The STATUS_WORD command is used to check for the presence of fault conditions such as OTP (Overtemperature Protection) and PG (Power Good) fail.							
PAGE (0x00)	The PAGE command is used to s subsequent commands are to be command shall return the curren	applied to	. When read,	this				
OPERATION (0x01)	Enables or disables the output of When read, this command return sent to the CoolX unit.							
VOUT_COMMAND (0x21)	The VOUT_COMMAND comman voltage of the selected (or page)							
ILIMIT_TRIM (0xD1)	The ILIMIT_TRIM command is us of the selected (or paged) modu							
			Module	ID Code				
	The MODULE_ID command is us	sed to	CmA	0x20				
MODULE_ID (0xD0)	return a code representing the m	nodel type	CmB	0x40				
_ , ,	of the selected (or paged) CoolN	1od.	CmC	0x60				
			CmD	0x80				

Note 1 - With Respect to Nominal Note 2 - With Respect to Maximum

High Power Modules (CmE-CmF) Output Specifications 3.4


Parameter	Module	Symbol	Min	Тур	Max	Unit
Output Voltage	CmE CmF	V _O	24 48	24 48	25.2 50.4	Vdc
Factory Setting Accuracy	CmE CmF	V _{O,factory}	-	-	20 20	mV
Output Current	CmE CmF	I _{O,max}	-	-	25 12.5	А
Output Power ¹	CmE CmF	P _{O,max}	-	-	550 550	W
Capacitive Loading ²	CmE CmF	C _{O,max}	-	-	10000 2500	uF

Note 1 - Maximum output power to be derated when CoolX is used in ambient temperatures greater than 40°C - see page 48 -Thermal Derating for further details.

Note 2 - Maximum capacitive load of the module to ensure monotonic startup (with no additional load applied).

Ripple and Noise - CmE, CmF

Parameter	Module	Symbol	Min	Тур	Max	Unit
Output Ripple ¹	CmE CmF	$V_{O,ripple}$	-		480 1680	mV
Output Ripple Frequency	All Modules	f	200	-	350	KHz

Note 1 - Amplitude of ripple measured at nominal voltage and at 20 MHz Bandwidth

Regulation - CmE, CmF

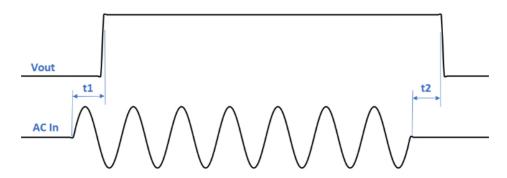
Parameter	Module	Symbol	Min	Тур	Max	Unit
Load Regulation 25-75% Load	CmE CmF	V _O	-	-	120 1680	mV
Line Regulation 85-264 Vac	CmE CmF	V _O	-	-	120 240	mV
Temperature Regulation ¹	All Modules		-	-	0.02	%/°C

Note 1 - Over ambient temperature change

Protective Limits - CmE, CmF

Parameter	Module	Symbol	Min	Тур	Max	Unit
Current Limit ¹	CmE CmF	l _{O,limit}	26.25 13.13	-	32.5 16.25	А
Short-Circuit Current Limit ²	CmE CmF	I _{O,short}	-	-	5.0 2.5	А
Power Limit ³	CmE CmF	$P_{O,limit}$	630 630	-	780 780	W
Overvoltage Protection ⁴	CmE CmF	V _O	27.5 55	- -	32.5 62.0	V
Sense Lead Protection ⁵	All Modules		-	-	7	V

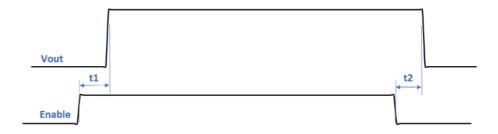
Note 1 - Hiccup. Auto-Recovery


Note 2 - Measured over 5 hiccup cycles

Note 3 - Hiccup, Auto-Recovery Note 4 - Shutdown (All outputs), Auto-Recovery

Note 5 - Shutdown, Auto-Recovery

Start-Up / Shut-Down - CmE, CmF



Parameter	Module	Symbol	Min	Тур	Max	Unit
Turn-On Delay ¹	All Modules	t1	-	-	1000	mS
Turn-Off Delay ²	All Modules	t2	16	-	-	mS

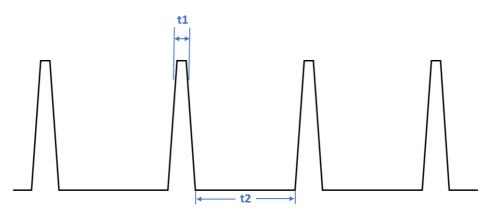
Note 1 - Time from Application of Input AC to Output Voltage Regulation (t1)

Note 2 - From Loss of AC to Loss of Output Voltage Regulation - Nominal Voltage (t2)

Enable / Disable - CmE, CmF

Parameter	Module	Symbol	Min	Тур	Max	Unit
Enable Delay ¹	All Modules	t1	-	-	20	mS
Rise Time ²	All Modules		2	-	8	mS
Disable Delay ³	All Modules	t2	-	-	10	mS
Fall Time ⁴	All Modules		0.01	-	8	mS

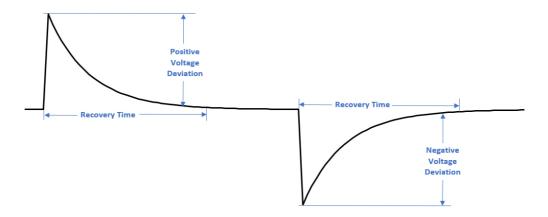
Note 1 - Time from application of Enable signal to Output Voltage Regulation (t1)


Note 2 - Measured from 10% - 90% of Vout

Note 3 - Time from application of Disable signal to loss of Output Voltage Regulation (t2)

Note 4 - Fully Loaded measured from 90% - 10% of Vout

Hiccup Characteristics - CmE, CmF


Parameter	Module	Symbol	Min	Тур	Max	Unit
Hiccup On-Time ¹	All Modules	t1	-	-	50	mS
Hiccup Off-Time ²	All Modules	t2	950	-	7000	mS
Short Circuit Hiccup Level ³	CmE CmF	Io	26.25 13.13	-	32.5 16.25	А

Note 1 - Length of time output is on during hiccup (t1)

Note 2 - Length of time output is off during hiccup (t2)
Note 3 - Output current at which module enters hiccup protection

Transient Response - CmE, CmF

Parameter	Module	Symbol	Min	Тур	Max	Unit
Transient Response, Voltage Deviation ¹	CmE CmF	V _O	-	-	0.96 1.92	V
Transient Response, Recovery Time ¹	All Modules		-	-	1000	uS

Note 1 - Measured during 25% - 75% and 75% - 25% Step Load Changes

Galvanic Isolation - CmE, CmF

Parameter		Module	Symbol	Min	Тур	Max	Unit
Input to Output	2 x MOPP	All Modules		4000	-	-	Vac
Output to Output	1 x MOPP	All Modules		1850	-	-	Vac

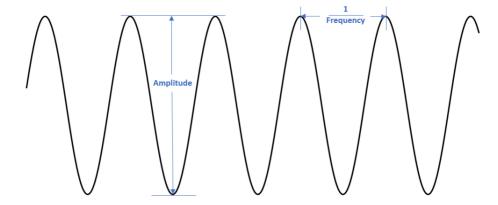
PMBusTM Communications - CmE, CmF

High Power modules can be monitored and controlled with the following PMBus Commands (for further details see the PMBusTM Manual available for download from the Advanced Energy website.

Command	Description				
	The READ_VOUT command is	Module	Accuracy ¹	Resolution	
READ_VOUT (0x8B)	used to return the output voltage measurement of the	CmE	+/- 4%	31 mV	
	selected (or paged) module	CmF	+/- 4%	60 mV	
	The READ_IOUT command is	Module	Accuracy ²	Resolution	
READ_IOUT (0x8C)	used to return the output current measurement of the	CmE	+/- 4%	45 mA	
	selected (or paged) module	CmF	+/- 4%	22 mA	
READ_TEMPERATURE_1 (0x8D)	The READ_TEMPERATURE_1 contemperature measurement of the Degrees Celsius. The accuracy of command is +/- 10 °C, while its in	e selected (f the READ	or paged) mo _TEMPERAT	odule in	
STATUS_WORD (0x79)	The STATUS_WORD command in fault conditions such as OTP (Over Power Good) fail.			•	
PAGE (0x00)	The PAGE command is used to subsequent commands are to be command shall return the current	applied to	. When read,	this	
VOUT_COMMAND (0x21)	The VOUT_COMMAND comman voltage of the selected (or paged		•	•	
ILIMIT_TRIM (0xD1)	The ILIMIT_TRIM command is used to explicitly set the current limit of the selected (or paged) module to the commanded value.				
	The MODULE_ID command is us	sed to	Module	ID Code	
MODULE_ID (0xD0)	return a code representing the m	nodel type	CmE	0xBC	
	of the selected (or paged) CoolM	/IOG.	CmF	0xBD	

Note 1 - With Respect to Nominal Note 2 - With Respect to Maximum

3.5 **Dual Modules (CmG-CmH) Output Specifications**


Parameter	Module	Symbol	Min	Тур	Max	Unit
Output Voltage	CmG (V1,V2) CmH (V1) CmH (V2)	V _o	3 3 3	24 5 24	30 6 30	Vdc
Factory Setting Accuracy	All Modules	V _{O,factory}	-	-	40	mV
Output Current	CmG (V1,V2) CmH (V1) CmH (V2)	l _{O,max}			3 6 3	А
Output Power per Channel ¹	CmG (V1,V2) CmH (V1) CmH (V2)	$P_{O,max}$	- - -	- - -	90 36 90	W
Total Output Power ¹	CmG CmH	P _{O,max}		-	120 100	W
Capacitive Loading ²	CmG (V1,V2) CmH (V1) CmH (V2)	$C_{O,max}$		-	6600 13200 6600	uF

Note 1 - Maximum output power to be derated when CoolX is used in ambient temperatures greater than 40°C - see page 48 -Thermal Derating for further details.

Note 2 - Maximum capacitive load of the module to ensure monotonic startup (with no additional load applied).

Ripple and Noise - CmG, CmH

Parameter	Module	Symbol	Min	Тур	Max	Unit
Output Ripple ¹	CmG (V1,V2) CmH (V1) CmH (V2)	$V_{O,ripple}$		1 1	240 100 240	mV
Output Ripple Frequency	All Modules	f	175	1	220	KHz

Note 1 - Amplitude of ripple measured at nominal voltage and at 20 MHz Bandwidth

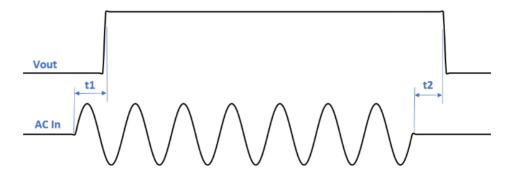
Regulation - CmG, CmH

Parameter	Module	Symbol	Min	Тур	Max	Unit
Load Regulation 0-100% Load	CmG (V1,V2) CmH (V1) CmH (V2)	Vo	- - -	- - -	480 100 480	mV
Line Regulation 85 - 264 Vac	CmG (V1,V2) CmH (V1) CmH (V2)	Vo	- - -	- - -	120 25 120	mV
Temperature Regulation ¹	All Modules		-	-	0.02	%/°C

Note 1 - Over ambient temperature change

Protective Limits - CmG, CmH

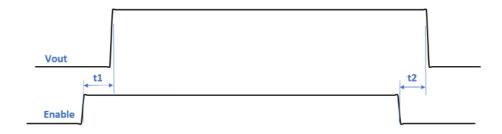
Parameter	Module	Symbol	Min	Тур	Max	Unit
Current Limit ¹	CmG (V1,V2) CmH (V1) CmH (V2)	I _{O,limit}	5.5 10 5.5		10 15 10	А
Short-Circuit Current Limit ²	CmG (V1,V2) CmH (V1) CmH (V2)	I _{O,short}	- - -	- - -	2.5 5.0 3.5	А
Overvoltage Protection ³	CmG (V1,V2) CmH (V1) CmH (V2)	Vo	33 6.9 33		39 7.5 39	>


Note 1 - Hiccup, Auto-Recovery

Note 2 - Measured over 5 hiccup cycles

Note 3 - Shutdown, Auto-Recovery

Start-Up / Shut-Down - CmG, CmH



Parameter	Module	Symbol	Min	Тур	Max	Unit
Turn-On Delay ¹	All Modules	t1	-	-	1000	mS
Turn-Off Delay ²	All Modules	t2	16	-	-	mS

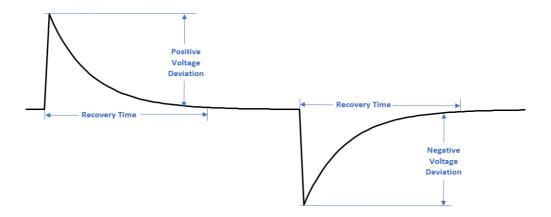
Note 1 - Time from Application of Input AC to Output Voltage Regulation (t1)

Note 2 - From Loss of AC to Loss of Output Voltage Regulation - Nominal Voltage (t2)

Enable / Disable - CmG, CmH

Parameter	Module	Symbol	Min	Тур	Max	Unit
Enable Delay ¹	All Modules	t1	-	-	100	mS
Rise Time ²	All Modules		-	-	20	mS
Disable Delay ³	All Modules	t2	0.1	-	8	mS
Fall Time ⁴	All Modules		0.05	-	1.3	mS

Note 1 - Time from application of Enable signal to Output Voltage Regulation (t1)


Note 2 - Measured from 10% - 90% of Vout

Note 3 - Time from application of Disable signal to loss of Output Voltage Regulation (t2)

Note 4 - Fully Loaded measured from 90% - 10% of Vout

Transient Response - CmG, CmH

Parameter	Module	Symbol	Min	Тур	Max	Unit
Transient Response, Voltage Deviation ¹	CmG (V1,V2) CmH (V1) CmH (V2)	V _o	- - -		960 500 960	mV
Transient Response, Recovery Time ¹	All Modules		-	-	1000	uS

Note 1 - Measured during 25% - 75% and 75% - 25% Step Load Changes

Galvanic Isolation - CmG, CmH

Parameter	Module	Symbol	Min	Тур	Max	Unit
Input to Output 2 x MOPP	All Modules		4000	-	-	Vac
Output to Output of Another Module 1 x MOPP	All Modules		1850	-	-	Vac
Output to Output of the Same Module	All Modules		500	-	-	Vac

PMBus™ Communications - CmG, CmH

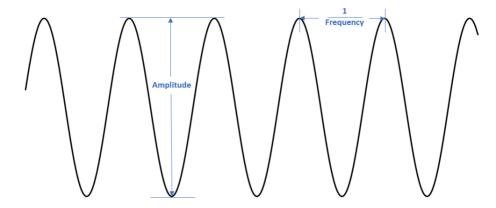
Dual modules can be monitored and controlled with the following PMBus Commands (for further details see the PMBUS Manual available for download from the Advanced Energy website.

Command	Description
PAGE (0x00)	The PAGE command is used to select which of the modules subsequent commands are to be applied to. When read, this command shall return the currently selected page number.
OPERATION (0x01)	The OPERATION command is used to enable or disable both outputs of the Dual module.
MODULE_ID (0xD0)	The MODULE_ID command is used to return a code representing the model type of the selected (paged) CoolMod. The ID code of a Dual CoolMod is 0xDD. (Please note that this is the same for all modules that do not come with the full suite of PMBus TM communications)

Wide Trim Modules (CmA-W01 to CmD-W01) Output Specifications 3.6

Parameter	Module	Symbol	Min	Тур	Max	Unit
Output Voltage	CmA - W01 CmB - W01 CmC - W01 CmD - W01	V _o	1 1 2 3	5 12 24 48	6 15 ¹ 28 58	Vdc
Factory Setting Accuracy	CmA - W01 CmB - W01 CmC - W01 CmD - W01	$V_{O,factory}$	- - -	- - -	20 30 40 100	mV
Output Current ²	CmA - W01 CmB - W01 CmC - W01 CmD - W01	I _{O,max}	- - - -	- - - -	21 15 8.33 4.17	А
Output Power ³	CmA - W01 CmB - W01 CmC - W01 CmD - W01	P _{O,max}	- - - -	- - - -	105 180 200 200	W
Capacitive Loading ⁴	CmA - W01 CmB - W01 CmC - W01 CmD - W01	$C_{O,max}$	- - -	- - - -	20000 10000 8000 4700	uF

Note 1 - Full Dynamic Specifications of the CmB-W01 module may not be met at full load when the CmB-W01 module is trimmed above 13V in the CoolX600.



Note 2 - Maximum output current to be derated by 10% when used in parallel.

Note 3 - Maximum output power to be derated when CoolX is used in ambient temperatures greater 40°C - see page 48 -Thermal Derating for further details.

Note 4 - Maximum capacitive load of the module to ensure monotonic startup (with no additional load applied). Higher capacitive loading is possible if non-monotonic startup is acceptable. Contact technical support for further details.

Ripple and Noise - CmA-W01, CmB-W01, CmC-W01, CmD-W01

Parameter	Module	Symbol	Min	Тур	Max	Unit
Output Ripple ¹	CmA - W01 CmB - W01 CmC - W01 CmD - W01	$V_{O,ripple}$	-	- - -	100 150 240 480	mV
Output Ripple Frequency ²	All Modules	f	220	-	260	KHz

Note 1 - Amplitude of ripple measured at nominal voltage and at 20 MHz Bandwidth

Regulation - CmA-W01, CmB-W01, CmC-W01, CmD-W01

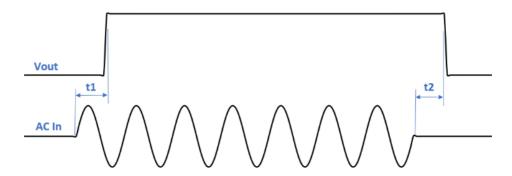
Parameter	Module	Symbol	Min	Тур	Max	Unit
Load Regulation 0-100% Load	CmA - W01 CmB - W01 CmC - W01 CmD - W01	V _o	- - -	- - - -	20 48 96 192	mV
Load Regulation - Paralleled 0-100% Load	CmA - W01 CmB - W01 CmC - W01 CmD - W01	Vo	48 155 400 638	- - -	90 231 558 959	mV
Line Regulation 85-264 Vac	CmA - W01 CmB - W01 CmC - W01 CmD - W01	Vo	- - - -	- - - -	12.5 30 60 120	mV
Temperature Regulation ¹	All Modules		-	-	0.02	%/°C

Note 1 - Over ambient temperature change

Protective Limits- CmA-W01, CmB-W01, CmC-W01, CmD-W01

Parameter	Module	Symbol	Min	Тур	Max	Unit
Current Limit ¹	CmA - W01 CmB - W01 CmC - W01 CmD - W01	l _{O,limit}	22 15.7 8.7 4.3	- - -	27.3 19.5 10.8 5.4	А
Short-Circuit Current Limit ²	CmA - W01 CmB - W01 CmC - W01 CmD - W01	I _{O,short}	- - -		15.7 11.25 6.25 3.12	А
Power Limit ³	CmA - W01 CmB - W01 CmC - W01 CmD - W01	P _O	110 190 210 210	- - - -	137 234 260 260	W
Overvoltage Protection ⁴	CmA - W01 CmB - W01 CmC - W01 CmD - W01	Vo	6.7 17 32 62	- - -	9.6 21 37 69.6	V
Sense Lead Protection ⁵	All Modules		-	-	3.1	V

Note 1 - Constant Limit into Hiccup, Auto-Recovery

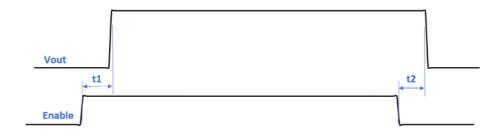

Note 2 - Measured over 5 hiccup cycles

Note 3 - Voltage Foldback into Hiccup, Auto-Recovery

Note 4 - Shutdown (All Outputs), Auto-Recovery

Note 5 - Shutdown, Auto-Recovery

Start-Up / Shut-Down- CmA-W01, CmB-W01, CmC-W01, CmD-W01



Parameter	Module	Symbol	Min	Тур	Max	Unit
Turn-On Delay ¹	All Modules	t1	-	-	1000	mS
Turn-Off Delay ²	All Modules	t2	16	1	-	mS

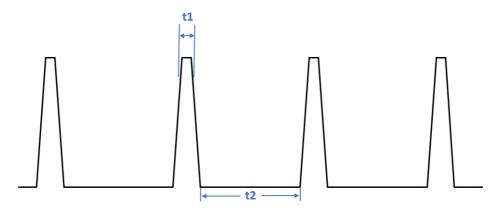
Note 1 - Time from Application of Input AC to Output Voltage Regulation (t1)

Note 2 - From Loss of AC to Loss of Output Voltage Regulation - Nominal Voltage (t2)

Enable / Disable- CmA-W01, CmB-W01, CmC-W01, CmD-W01

Parameter	Module	Symbol	Min	Тур	Max	Unit
Enable Delay ¹	All Modules	t1	-	-	15	mS
Rise Time ²	All Modules		1	-	5	mS
Disable Delay ³	All Modules	t2	-	-	8	mS
Fall Time ⁴	All Modules		0.01	-	3	mS

Note 1 - Time from application of Enable signal to Output Voltage Regulation (t1)

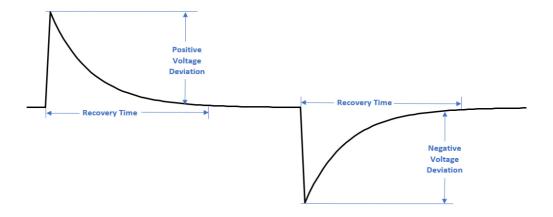

Note 2 - Measured from 10% - 90% of Vout

Note 3 - Time from application of Disable signal to loss of Output Voltage Regulation (t2)

Note 4 - Fully Loaded measured from 90% - 10% of Vout

Hiccup Characteristics - CmA-W01, CmB-W01, CmC-W01, CmD-W01

Parameter	Module	Symbol	Min	Тур	Max	Unit
Hiccup On-Time ¹	All Modules	t1	1	-	200	mS
Hiccup Off-Time ²	All Modules	t2	900	-	1200	mS
Short Circuit Hiccup Level ³	CmA - W01 CmB - W01 CmC - W01 CmD - W01	Vo	0.4 0.4 0.5 1.1	- - -	0.9 0.9 1.8 2.5	V


Note 1 - Length of time output is on during hiccup (t1)

Note 2 - Length of time output is off during hiccup (t2)

Note 3 - Output voltage at which module enters hiccup protection

Transient Response - CmA-W01, CmB-W01, CmC-W01, CmD-W01

Parameter	Module	Symbol	Min	Тур	Max	Unit
Transient Response, Voltage Deviation ¹	CmA - W01 CmB - W01 CmC - W01 CmD - W01	Vo	- - -	- - -	0.3 0.48 0.96 0.96	V
Transient Response, Recovery Time ¹	All Modules		-	-	500	uS
Transient Response, Voltage Deviation ²	CmA - W01 CmB - W01 CmC - W01 CmD - W01	Vo	- - -	- - -	0.6 1.2 1.8 2.4	V
Transient Response, Recovery Time ²	All Modules				1000	uS

Note 1 - Measured during 25% - 75% and 75% - 25% Step Load Changes

Note 2 - Measured during 10% - 100% and 100 - 10% Step Load Changes

Galvanic Isolation - CmA-W01, CmB-W01, CmC-W01, CmD-W01

Parameter		Module	Symbol	Min	Тур	Max	Unit
Input to Output 2 ×	MOPP	All Modules		4000	-	-	Vac
Output to Output 1 >	MOPP	All Modules		1850	-	-	Vac

PMBus™ Communications - CmA-W01, CmB-W01, CmC-W01, CmD-W01

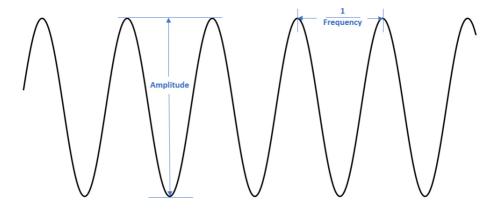
Wide Trim modules can be monitored and controlled with the following PMBus Commands (for further details see the PMBUS Manual available for download from the Advanced Energy website.

Command	Description							
		Module	Accuracy ¹	Resolution				
	The READ_VOUT command is	CmA-W01	+/- 4%	6.6 mV				
READ_VOUT (0x8B)	used to return the output voltage measurement of the	CmB-W01	+/- 4%	16.5 mV				
	selected (or paged) module	CmC-W01	+/- 4%	44.3 mV				
		CmD-W01	+/- 4%	82.4 mV				
		Module	Accuracy ²	Resolution				
	The READ_IOUT command is	CmA-W01	+/- 4%	40 mA				
READ_IOUT (0x8C)	used to return the output current measurement of the	CmB-W01	+/- 4%	29 mA				
	selected (or paged) module	CmC-W01	+/- 4%	16 mA				
		CmD-W01	+/- 4%	8 mA				
READ_TEMPERATURE_1 (0x8D) STATUS_WORD (0x79)	The READ_TEMPERATURE_1 command is used to return the temperature measurement of the selected (or paged) module in Degrees Celsius. The accuracy of the READ_TEMPERATURE_1 command is +/- 10 °C, while its resolution is 1 °C. The STATUS_WORD command is used to check for the presence of fault conditions such as OTP (Overtemperature Protection) and PG							
PAGE (0x00)	(Power Good) fail. The PAGE command is used to subsequent commands are to be command shall return the current	applied to.	When read, t	his				
VOUT_COMMAND (0x21)	The VOUT_COMMAND commar voltage of the selected (or paged		•	•				
ILIMIT_TRIM (0xD1)	The ILIMIT_TRIM command is us of the selected (or paged) modu							
			Module	ID Code				
	The MODULE_ID command is us	sed to	CmA-W01	0x22				
MODULE_ID (0xD0)	return a code representing the m	nodel type	CmB-W01	0x42				
	of the selected (or paged) CoolN	lod.	CmC-W01	0x62				
			CmD-W01	0x82				

Note 1 - With Respect to Nominal Note 2 - With Respect to Maximum

High Voltage Modules (CmK) Output Specifications 3.7

Parameter	Module	Symbol	Min	Тур	Max	Unit
Output Voltage	CmK	Vo	175	200	205	Vdc
Factory Setting Accuracy	CmK	V _{O,factory}	-	-	40	mV
Output Current	CmK	I _{O,max}	-	-	0.66	А
Output Power ¹	CmK	P _{O,max}	-	-	132	W
Capacitive Loading ²	CmK	C _{O,max}	-	-	100	uF


Note 1 - Maximum output current to be derated by 10% when used in parallel.

Note 2 - Maximum output power to be derated when CoolX is used in ambient temperatures greater than 40°C - see page 48 -Thermal Derating for further details.

Note 3 - Maximum capacitive load of the module to ensure monotonic startup (with no additional load applied). Higher capacitive loading is possible if non-monotonic startup is acceptable. Contact technical support for further detail.

Ripple and Noise - CmK

Parameter	Module	Symbol	Min	Тур	Max	Unit
Output Ripple ¹	CmK	$V_{O,ripple}$	-	-	2000	mV
Output Ripple Frequency ²	CmK	f	220	-	260	KHz

Note 1 - Amplitude of ripple measured at nominal voltage and at 20 MHz Bandwidth

Regulation - CmK

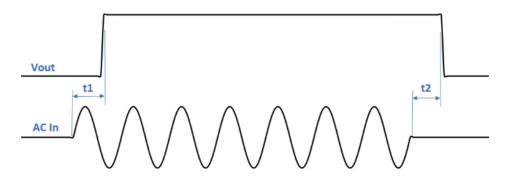
Parameter	Module	Symbol	Min	Тур	Max	Unit
Load Regulation	CmK	Vo	-	-	2000	mV
Load Regulation Paralleled ¹	CmK	Vo	-	-	4000	mV
Line Regulation	CmK	V _O	-	-	1000	mV
Temperature Regulation ²	CmK	V _O	-	-	0.02	%/°C

Note 1 - Load Regulation is softened in parallel mode to improve current share

Note 2 - Over ambient temperature change

Protective Limits - CmK

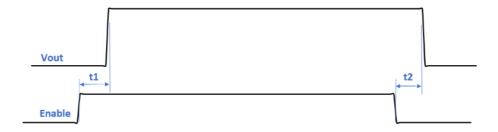
Parameter	Module	Symbol	Min	Тур	Max	Unit
Current Limit ¹	CmK	l _{O,limit}	0.69	-	0.86	А
Short-Circuit Current Limit ²	CmK	I _{O,short}	-	-	1	А
Power Limit ³	CmK	$P_{O,limit}$	138	-	175	W
Overvoltage Protection ⁴	CmK	V _O	230	-	250	V


Note 1 - Constant Current Limit into Hiccup. Auto-Recovery

Note 2 - Auto-Recovery, Measured over 5 hiccup cycles Note 3 - Voltage Foldback into Hiccup, Auto-Recovery

Note 4 - Shutdown (All outputs), Auto-Recovery

Start-Up / Shut-Down - CmK



Parameter	Module	Symbol	Min	Тур	Max	Unit
Turn-On Delay ¹	CmK	t1	-	-	1000	mS
Turn-Off Delay ²	CmK	t2	16	-	-	mS

Note 1 - Time from Application of Input AC to Output Voltage Regulation (t1)

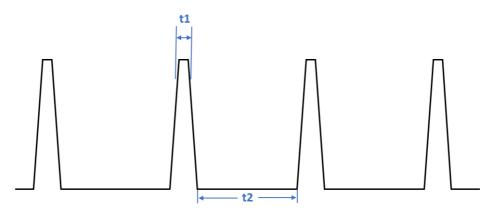
Note 2 - From Loss of AC to Loss of Output Voltage Regulation - Nominal Voltage (t2)

Enable / Disable - CmK

Parameter	Module	Symbol	Min	Тур	Max	Unit
Enable Delay ¹	CmK	t1	-	-	30	mS
Rise Time ³	CmK		4	-	20	mS
Disable Delay ⁴	CmK	t2		-	30	mS
Fall Time ⁵	CmK		0.01	-	3	mS

Note 1 - Time from application of Enable signal to Output Voltage Regulation (t1)

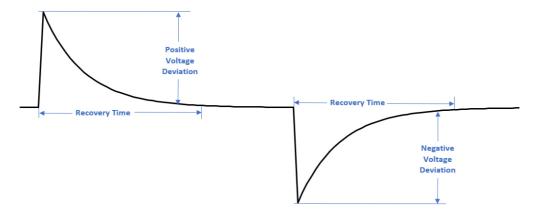
Note 2 - The CoolX600 will enter a power saving Deep Sleep mode if all modules have been disabled for more than 5 seconds.


Note 3 - Measured from 10% - 90% of Vout

Note 4 - Time from application of Disable signal to loss of Output Voltage Regulation (t2)

Note 5 - Fully Loaded measured from 90% - 10% of Vout

Hiccup Characteristics - CmK


Parameter	Module	Symbol	Min	Тур	Max	Unit
Hiccup On-Time ¹	CmK	t1	1	-	100	mS
Hiccup Off-Time ²	CmK	t2	900	-	1200	mS
Short Circuit Hiccup Level ³	CmK	V _{O,Short}	37	-	53	V

Note 1 - Length of time output is on during hiccup (t1)

Note 2 - Length of time output is off during hiccup (t2)
Note 3 - Output voltage at which module enters hiccup protection

Transient Response - CmK

Parameter	Module	Symbol	Min	Тур	Max	Unit
Transient Response, Voltage Deviation ¹	CmK	V _O	-	-	7.5	٧
Transient Response, Recovery Time ¹	Cmk		-	-	1000	uS
Transient Response, Voltage Deviation ²	CmK	Vo	-	-	7.5	V
Transient Response, Recovery Time ²	Cmk		-	-	500	uS

Note 1 - Measured during 25% - 75% and 75% - 25% Step Load Changes

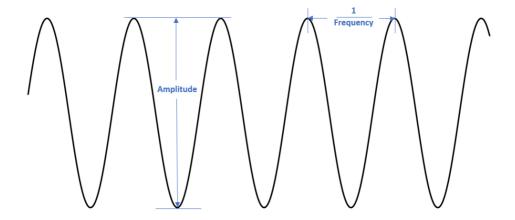
Galvanic Isolation - CmK

Parameter		Module	Symbol	Min	Тур	Max	Unit
Input to Output	2 x MOPP	CmK		4000	-	-	Vac
Output to Output	1 x MOPP	Cmk		1850	-	-	Vac

Note 2 - Measured during 10% - 100% and 100% - 10% Step Load Changes

PMBusTM Communications - CmK

High Voltage modules can be monitored and controlled with the following PMBus Commands (for further details see the PMBusTM Manual available for download from the Advanced Energy website.


Command	Description			
	The READ_VOUT command is used to return the output		Accuracy ¹	Resolution
READ_VOUT (0x8B)	voltage measurement of the selected (or paged) module.	CmK	+/- 4%	280 mV
	The READ_IOUT command is	Module	Accuracy ²	Resolution
READ_IOUT (0x8C)	used to return the output current measurement of the selected (or paged) module.	CmK	+/- 4%	2 mA
READ_TEMPERATURE_1 (0x8D)	The READ_TEMPERATURE_1 command is used to return the temperature measurement of the selected (or paged) module in Degrees Celsius. The accuracy of the READ_TEMPERATURE_1 command is +/- 10 °C, while its resolution is 1 °C.			
STATUS_WORD (0x79)	The STATUS_WORD command is used to check for the presence of fault conditions such as OTP (Overtemperature Protection) and PG (Power Good) fail.			
PAGE (0x00)	The PAGE command is used to subsequent commands are to be command shall return the curren	applied to	. When read,	this
VOUT_COMMAND (0x21)	The VOUT_COMMAND comman voltage of the selected (or paged			· ·
LIMIT_TRIM (0xD1)	The ILIMIT_TRIM command is used to explicitly set the current limit of the selected (or paged) module to the commanded value.			
MODULE_ID (0xD0)	The MODULE_ID command is us		Module	ID Code
	return a code representing the model type of the selected (or paged) CoolMod.		CmK	0xA0
Note 1 - With Respect to Nominal Note 2 - With Respect to Maximum				

3.8 **Auxiliary Output Specifications**

Parameter	Option	Symbol	Min	Тур	Max	Unit
Output Voltage	12V (Option A) 5V (Option B)	V_{AUX}	11.60 4.80	12.00 5.00	12.40 5.20	Vdc
Output Current	12V (Option A) 5V (Option B)	I _{AUX,max}	-	-	1.96 4.7	А
Output Power	12V (Option A) 5V (Option B)	P _{AUX,max}	-	-	23.5 23.5	W

Ripple and Noise - Auxiliary Output

Parameter	Module	Symbol	Min	Тур	Max	Unit
Output Ripple ¹	12V (Option A) 5V (Option B)	V _{AUX,ripple}	1 1	1 1	480 200	mV mV
Output Ripple Frequency	Both Options	f	180	-	220	KHz

Note 1 - Amplitude of ripple measured at nominal voltage and at 20 MHz Bandwidth

Regulation - Auxiliary Output

Parameter	Option	Symbol	Min	Тур	Max	Unit
Load Regulation 0-100% Load	12V (Option A) 5V (Option B)	V _{AUX}	-	-	96 40	mV
Line Regulation 85-264 Vac	12V (Option A) 5V (Option B)	V _{AUX}	-	-	36 15	mV

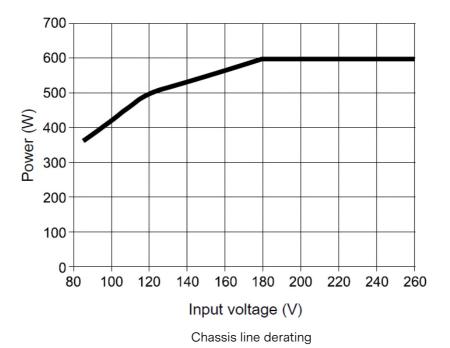
Protective Limits - Auxiliary Output

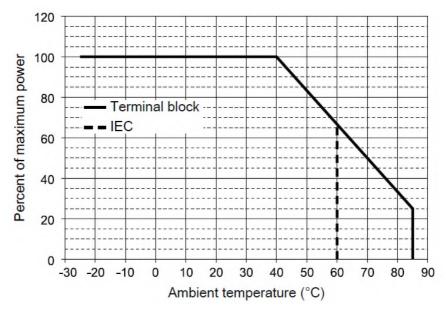
Parameter	Option	Symbol	Min	Тур	Max	Unit
Current Limit ¹	12V (Option A) 5V (Option B)	I _{AUX,limit}	2.0 5.0	-	2.8 6.8	А
Short-Circuit Current Limit ²	12V (Option A) 5V (Option B)	I _{AUX,short}		-	1.0 2.4	А
Power Limit ³	12V (Option A) 5V (Option B)	P _{AUX}	24.6 24.1	-	33.6 33.6	W

Note 1 - Hiccup, Auto-Recovery

Note 2 - Measured over 5 hiccup cycles

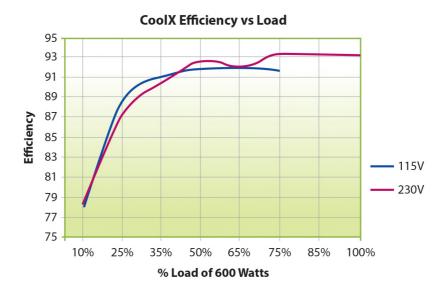
Note 3 - Hiccup, Auto-Recovery

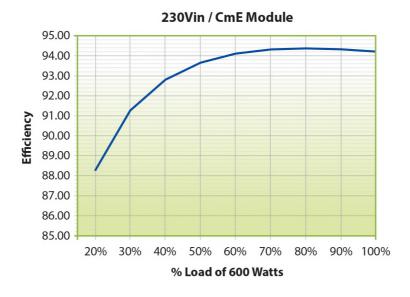

Galvanic Isolation - Auxiliary Output


Parameter	Module	Symbol	Min	Тур	Max	Unit
Input to Output 2 x MOPP	Both Options		4000	-	-	Vac

3.9 Power Ratings

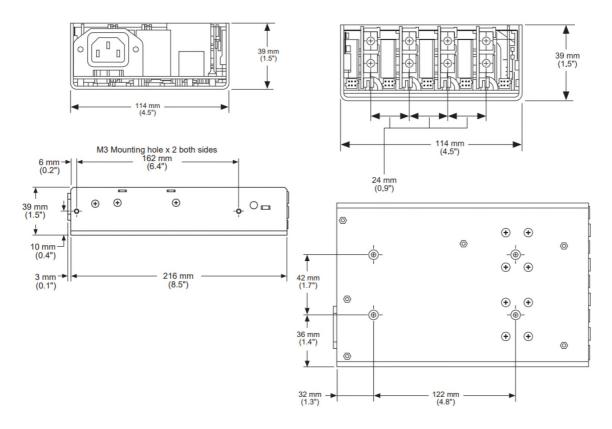
When selecting a power supply for an application it is necessary to ensure it operates within its power capabilities by taking into account both Temperature Derating and Input Voltage Derating. Input Voltage Derating and Temperature Derating curves are shown below. Line Derating applies to the CoolPac only while Temperature Derating applies to both the CoolPac and the CoolMods.





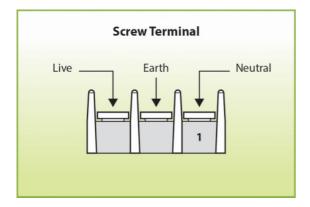
Chassis and module temperature derating

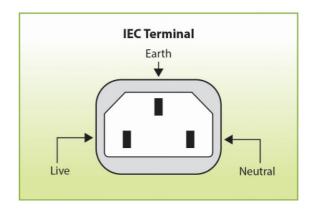
3.10 Efficiency Curve



4.1 Mechanical Information

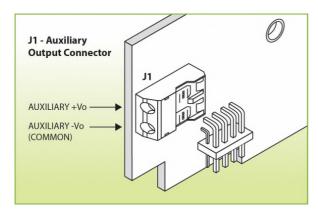
The CoolX600 mechanical outline is shown below. Full 3D and STEP files can be downloaded from www.advancedenergy.com or alternatively contact productsupport.ep@aei.com for details.


CoolX600 can be mounted on its base, vertically, or on its side. CoolX600 can also be mounted on the DIN Rail Accessory (Z744).



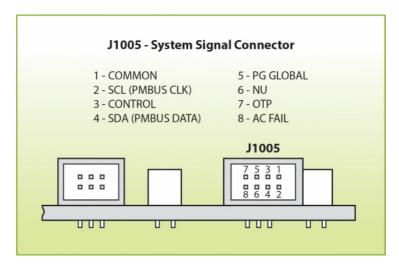
Connectors Definition and Mating Connector 4.2

Input Connectors (CoolPac)


AC mains is applied to the CoolX via the 3 Screw Terminal or the optional IEC320 inlet terminal.

Auxiliary Bias Supply Voltage

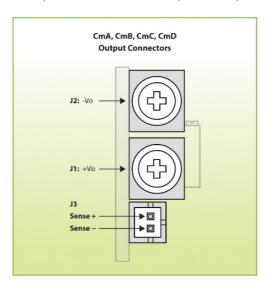
The Auxiliary Bias supply (always ON) of 12V/1.96A or 5V/4.7A (optional) is provided on J1 connector of the unit A only.

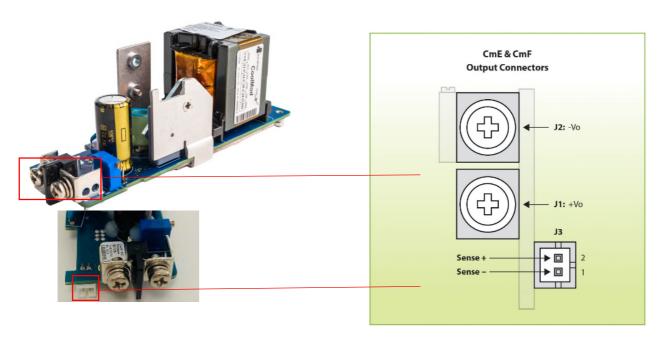


Reference	On Power Supply	Mating Connector or Equivalent
J1 Auxiliary Output Connector	Molex 104188-0210	Stripped Wire

Global System Signal Connector

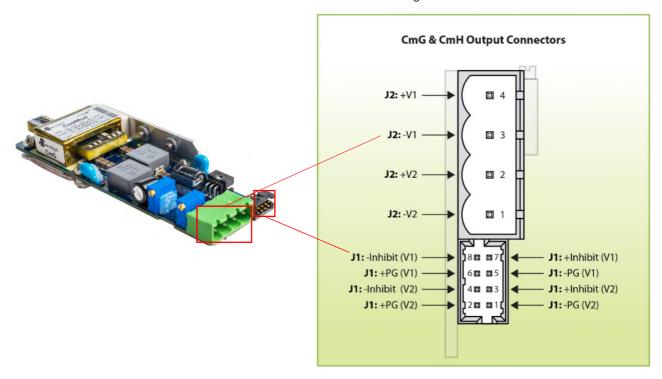
The System Signal Connector contains all the Global signals including AC Fail, Power Good, and Over-Temperature Alarm.




Reference	On Power Supply	Mating Connector or Equivalent
J1005 System Signal Connector	8-way Molex: 87833-0831	Locking Molex: 51110-0860, Non-Locking Molex: 51110-0850, Locking and Polarizing: 51110-856 Crimp Terminal: Molex p/n 50394

Output Power and Sense Connectors (Standard, Wide-Trim and High Power Modules)

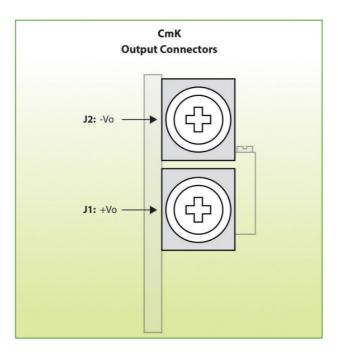
Each CoolMod (CmA-D and CmE-F) has Power Terminals (J1 and J2) and a Remote Sense Connector (J3).



Reference	On Power Supply	Mating Connector or Equivalent
J1 & J2 Output Connectors	Terminals	M4 Screws
J3 Sense Connector	JST - S2BPH-K-S (LF) (SN)	JST PHR-2, Crimp: JST BPH-002T-P0.5S or SPH-002T-P0.5S

Output Power and Signal Connectors (CmG-H)

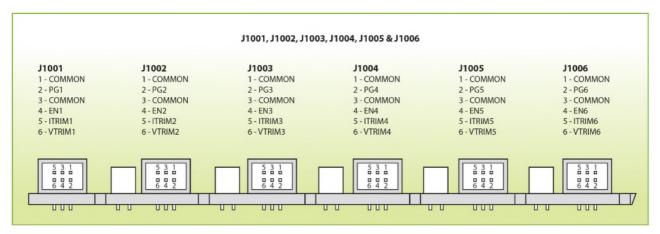
The CmG and CmH modules have a Dual Power Terminal J2 and a Signal Connector J1.



Reference	On Power Supply	Mating Connector or Equivalent
J1 CmG/CmH Signal Connector	8-way Molex: 87833-0831	Locking Molex: 51110-0860, Non-Locking Molex: 51110-0850; Locking and Polarizing: 51110-856 Crimp Terminal: Molex p/n 50394
J2 Power Terminal	Camden: CTB9350/4A Wurth Elektronik: 691 313 710 004	Camden: CTB9200/4A Wurth Elektronik: 691 352 710 004

Output Power and Signal Connectors (CmK)

The CmK module has Power Terminals (J1 and J2) but with no sense connector.



Reference	On Power Supply	Mating Connector or Equivalent
J1 & J2 Output Connectors	Terminals	M4 Screws

DC Output Signals and Control Connectors

The DC Output Signals Connectors contain the individual Output Signals and Control Signals, including, PG, EN, VTRIM, ITRIM.

Reference	On Power Supply	Mating Connector or Equivalent
J1001-J1004	6-way Molex: 87833-0631	Locking Molex: 51110-0660; Non-Locking Molex: 51110-0650 Locking and Polarizing Molex: 51110- 0650 Crimp Terminal: Molex p/n 50394

Mounting Options

Base Plate Mounting

The CoolX600 can be mounted in the system via the 4 mounting holes on the base of the power supply. See mechanical drawings for mounting hole positions. Use M4 mounting screws and ensure that maximum screw penetration from base does not exceed 2 mm.

Side Mounting

The CoolX600 can be mounted in the system via the 3 mounting holes on each side of the case. See mechanical drawings for mounting hole positions. Use M3 mounting screws and ensure that maximum screw penetration from base does not exceed 2 mm.

DIN-rail mounting

Mount the CoolPac chassis on the DIN-rail mounting bracket (Z744).

5.1 **Environmental Parameters**

The CoolX600 series are designed for the following parameters

- Material Group IIIb, Pollution Degree 2
- Installation Category 2
- Class I
- Indoor use (installed, accessible to Service Engineers only)
- Altitude: -155 meters to +5000 meters from sea level
- Humidity: 5 to 95% non-condensing
- Operating temperature -20°C to 60°C

In addition, CoolX600 is compliant with the following directives:

RoHS 3.0 EU Directive 2015/863 RoHS compliancy

REACH Compliant

Additional Information

Additional information such as Application Note, White Papers, Safety Certificates etc. are available at www.advancedenergy.com . Alternatively, please do not hesitate to contact productsupport.ep@aei.com if you have any further questions or need additional information.

5.2 EMC Characteristics

EMC Directive 2004/108/EC

Component Power Supplies such as the CoolX series are not covered by the EMC directive. It is not possible for any power supply manufacturer to guarantee conformity of the final product to the EMC directive, since performance is critically dependent on the final system configuration. System compliance with the EMC directive is facilitated by AE products compliance with several of the requirements as outlined in the following paragraphs. Although the CoolX meets these requirements, the CE mark does not cover this area.

The table below outlines the EMC characteristics of the CoolX600 power supply under load conditions. A full EN60601-1-2 4th edition test report is available on request. Contact Advanced Energy for details.

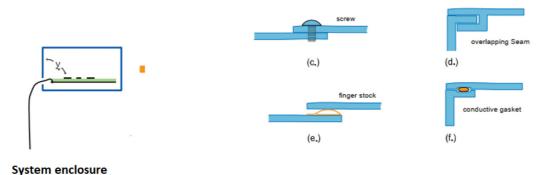
Parameter	Conditions/Descriptions	Criteria
Radiated Emissions	EN55011, EN55022 and FCC, Class B	-
Conducted Emissions	EN55011, EN55022 and FCC, Class B	-
Power Line Harmonics	EN61000-3-2, Class A	-
Voltage Flicker	EN61000-3-3	-
ESD	EN61000-4-2, Level 4, 8kV Contact, 15kV air	А
Radiated Immunity	EN61000-4-3, Level 3, 10V/m	А
Electrical Fast Transient	EN61000-4-4, Level 4, ±4kV	А
Surge Immunity	EN61000-4-5, Level 4, 2kV DM, 4kV CM	В
Conducted RF Immunity	EN61000-4-6, Level 3, 10Vrms	А
Power Frequency Magnetic Field	EN61000-4-8, Level 4, 30A/m	А

Radiated EMI should be tested in a system environment, Radiated EMI performance in a system will vary significantly from a stand-alone power supply due to the system enclosure which will provide additional shielding.

- Criteria A: The apparatus shall continue to operate as intended. No degradation of performance or loss of function is observed during or after the test.
- Criteria B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the apparatus is used as intended. During the test, temporary degradation of performance is allowed if is self-recoverable.
- Criteria C: Temporary loss of function is allowed during and after the test that require operator intervention to restore the product/apparatus to normal operation.
- Criteria D: During the test, Loss of function which is not recoverable.

Additional EMI Characterization

CoolX600 is compliant with SEMI F47 for voltage dips and interruptions. Input voltage must be >180Vac.

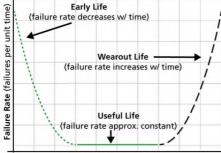

Guidelines for Optimal EMC Performance

CoolX600 series products are designed to comply with European Normative limits (EN) for conducted and radiated emissions and immunity when correctly installed in a system. See performance levels attained in previous page. However, power supply compliance with these limits is not a guarantee of system compliance. System EMC performance can be impacted by a number and combination items. Design consideration such as PCB layout and tracking, cabling arrangements and orientation of the power supply amongst others all directly contribute to the EMC performance of a system.

Cabling arrangements and PCB tracking layouts are the greatest contributing factors to system EMC performance. It is important that PCB tracks and power cables are arranged to minimise current carrying loops that can radiate, and to minimise loops that could have noise currents induced into them. All cables and PCB tracks should be treated as radiation sources and antenna and every effort should be made to minimise their interaction

- · Route all cables as close as possible to a well earthed sheet of metal.
- · Keep all cable lengths as short as possible
- Minimise the area of power carrying loops to minimise radiation, by using twisted pairs of power cables with the maximum twist possible.
- · Run PCB power tracks back to back.
- Minimise noise current induced in signal carrying lines, by twisted pairs for sense cables with the maximum twist possible.
- Do not combine power and sense cables in the same harness.
- Ensure good system grounding. System Earth should be a "starpoint". Input earth of the equipment should be directed to the "starpoint" as soon as possible. The power supply earth should be connected directly to the "starpoint". All other earths should go to the 'starpoint".

If the power supply is enclosed in a larger system enclosure, it is preferable to use a conductive metal enclosure and that all seams have a good conductive bond using one of these methods.


Rev. 10.29.25 #1.2

Treatment of Seams

5.3 Reliability

The 'bath-tub' curve shows how the failure rate of a power supply develops over time. It is made up of three separate stages. Immediately after production, some units fail due to defective components or production errors. To ensure that these early failures do not happen while in the possession of the user, carries out a full burn-in on each unit, designed to ensure that all these early failures are detected at Advanced Energy. After this period, the power supplies fail very rarely, and the failure rate during this period is fairly constant. The reciprocal of this failure rate is the MTBF (Mean Time Between Failures).

Time (hours, miles, cycles, etc.)

At some time, as the unit approaches its end of life, the first signs of wear appear and failures become more frequent. Generally 'lifetime' is defined as that time where the failure rate increases to five times the statistical rate from the flat portion of the curve. In summary, the MTBF is a measurement of how many devices fail in a period of time (i.e. a measure of reliability), before signs of wear set in. On the other hand, the lifetime is the time after which the units fail due to wear appearing. The MTBF may be calculated mathematically as follows:

MTBF = Total x t / Failure, where

Total is the total number of power supplies operated simultaneously.

Failure is the number of failures.

t is the observation period.

MTBF may be established in two ways, by actual statistics on the hours of operation of a large population of units, or by calculation from a known standard such as latest Telecordia SR-332.

Determining MTBF by Calculation

MTBF, when calculated in accordance with Telecordia, and other reliability tables involves the summation of the failure rates of each individual component at its operating temperature. The failure rate of each component is determined by multiplying a base failure rate for that component by its operating stress level. The result is FPMH, the failure rate per million operating hours for that component. Then FPMH for an assembly is simply the sum of the individual component FPMH.

Total FPMH = FPMH1 + FPMH2 + +FPMHn

MTBF (hours) = $1,000,000 \div FPMH$

In this manner, MTBF can be calculated at any temperature.

CoolMod (CmA-D): 0.12 failures per million hours

CoolPac: 1.08 failures per million hours

Example:

Total FPMH = $0.25 + (4 \times 0.12) = 0.73$ FPMH.

MTBF = 1370K hours at 40 °C

MTBF and Temperature

Reliability and MTBF are highly dependent on operating temperature. The figures above are given at 40 °C. For each 10 °C decrease, the MTBF increases by a factor of approximately 2.

Conversely, however, for each 10 °C increase, the MTBF reduces by a similar factor. Therefore, when comparing manufacturer's quoted MTBF figures, look at the temperature information provided.

Shelf Life of Power Supplies

If electrolytic capacitors are stored without voltage for an extended period of time, the oxide film on the anode foil can deteriorate which will result in higher than specified leakage current when voltage is applied. This has a negative impact on the ripple current on the capacitor, which results in additional heating of the component and has a direct impact on reliability.

According to published research, the commencement of this chemical reaction can occur after a two year period of an unpowered unit, and as such Advanced Energy recommends that the maximum shelf life for our platform designs is two years.

SECTION 6 SAFETY APPROVALS / CERTIFICATION

Safety Approvals 6.1

CX06M is certified to IEC60601-1 3rd Edition and IEC60601-1-2 4th Edition for medical applications. CX06S is certified to IEC62368-1.

Galvanic isolation levels are shown below

Input to Output	Reinforced (2 x MOPP)	4000Vac
Input to Case (GND)	Basic (1 x MOPP)	1850Vac
Output to Case (GND)	Basic (1 x MOPP)	1850Vac
Output to Output	Basic (1 x MOPP)	1850Vac

Low Voltage Directive (LVD) 2006/95/EC.

The LVD applies to equipment with an AC input voltage of between 50V and 1000V or a DC input voltage between 75V and 1500V. The CoolX series is CE marked to show compliance with the LVD. The relevant European standard for CoolX is EN60950 2nd Edition (Information technology). The relevant European standard for CoolX is EN60601-1 3rd Edition (Medical Devices Directive).

The full table of Safety certifications are listed below

Module	Standard	Certification/Description		
CX60S	IEC 62368-1 Edition 2	IEC 62368-1 (2014) Edition 2 5000m (16,400ft) altitude, 100 - 240Vac ±10%		
CX003	IEC/EN 60950-1 Edition 2	UL 60950-1/CSA C22.2 No 60950-1 Edition 2 5000 m (16,404ft) altitude, 100 - 240Vac ±10%		
СХ06М	IEC/EN 60601-1 Edition 3	IEC 60601-1(2005), EN 60601-1(2006) ANSI/AAMI ES 60601-1(2005) CAN/CSA C22.2 No. 60601-1 (2008) 5000m (16,400ft) altitude, 100 - 240Vac ±10%		

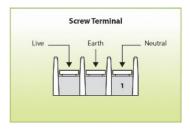
7.1 CoolX600 Operation

The CoolX600 provides the front end input power to the CoolMod. The CoolPac operates of 85-264Vac, 47-63Hz and can withstand 300Vac input voltage for up to 5 secs.

The CoolPac can also operate off DC inputs of 125-300Vdc.

There are two CoolPac versions.

- CX06S for Industrial and Hi Rel Applications
- · CX06M for Medical Applications

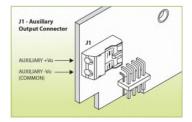

7.2 Input Power

AC Input Connector

L - Live

≟ - Earth

N - Neutral

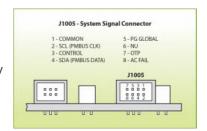

7.3 System/Global Output/ Signal

J1 - AUX Output Connector

CoolX600 has a SELV isolated 24W auxiliary (always on) voltage of 12V/1.97A or 5V/4.7A (optional). This is available through the J1 connector on the upper CoolX600. This Bias supply output has 4000Vac isolation from the primary and is ideal for powering displays, system housekeeping, control circuits or may be used as an additional output voltage. Please note that the negative of the auxiliary (-Vo) is connected to the Common of the System Signal Connector.

AUXILIARY +Vo - +AUXILIARY Output (VALIX)

AUXILIARY -Vo - AUXILIARY Output Return



J1005 - System Signal Connector

COMMON - (Pin 1 of J1005)

Ground reference of the system signal, this is connected to V- of the auxiliary output.

SCL, SDA (PMBUS CLK and PMBUS DATA) - (Pins 2, 4 of J1005)

PMBus serial clock and data bus - These pins will be pulled-up by the user to a 3.3V or 5V bus. A resistor value of 2k - 10k is recommended.

CONTROL (Global Enable/Inhibit) - (Pin 3 of J1005)

All outputs will be enabled/inhibited simultaneously by means of an appropriate signal applied to the Control input on J1005, between Pin 3 (Control) and Pin 1 (Common). Under normal conditions Pin 3 is pulled to 5V internally (logic high) and all modules are enabled. To disable all modules simply pull Pin 3 to Common (logic low). There is a max 30ms (100ms for dual module) delay from change in signal logic to change in output voltage.

The Control pin has a 1K ohm series resistor and a 100nF filtering capacitor to filter noise on this signal. The maximum allowable voltage on Pin 3 is 5V.

PG GLOBAL (Global Power Good) - (Pin 5 of J1005)

A PG GLOBAL signal is controlled with an NPN transistor providing an unbiased open collector signal that is available on the J1005 System Signal Connector via the collector on Pin 5 and the emitter on Pin 1 (Common). This is activated when all enabled CoolMods report individual Power Good for their outputs. There is a 390 ohm resistor in series with the collector for current limiting. When the output of all CoolMods are within 10% of Vset, the transistor is turned on. When the output of any enabled CoolMod is >10% outside of Vset, the transistor is turned off.

Note: The status of dual modules are not included in PG GLOBAL

The maximum collector voltage is 30V, and the maximum collector current is 5mA.

Refer to the implementation circuit and table of logics at page 67 for recommendations for driving logic level circuits with open collector signal outputs.

OTP - Over Temperature Protection - (Pin 7 of J1005)

The CoolX600 monitors internal temperatures on the power supply to ensure that component temperatures do not exceed their ratings. The OTP warning signal an unbiased open collector signal that is available on the J1005 System Signal Connector via the collector on Pin 7 and the emitter on Pin 1 (Common). There is a 390 ohm resistor in series with the collector for current limiting. During normal operation the transistor is turned off. If an Over Temperature condition is detected, the OTP signal will be pulled low via a 390 ohm resistor as a pre-warning of a possible shutdown of the power supply. If the OTP condition persists for a further 2 seconds, the CoolX600 will shut down. The CoolX600 will auto recover when temperatures reach normal operating level.

Shut down from over temperature signal is dependent on environment, and this signal can be used to turn on an external fan or to shed loads both of which would reduce the temperature rise in the power supply.

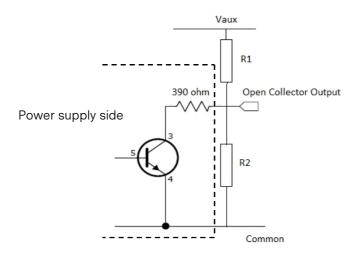
The maximum collector voltage is 30V, and the maximum collector current is 5mA.

Refer to the implementation circuit and table of logics at page 67 for recommendations for driving logic level circuits with open collector signal outputs.

AC FAIL - (Pin 8 of J1005)

The AC FAIL signal indicates that the input voltage has failed or has dropped below 70Vac. The AC Mains Fail signal is controlled with an NPN transistor providing an unbiased open collector that is available on the J1005 System Signal Connector via the collector on Pin 8 and the emitter on Pin 1 (Common). There is a 3900hm resistor in series with the collector for current limiting. During normal operation the transistor is ON, when the input voltage is lost or goes below 70Vac, the transistor is turned OFF at least 1mS before loss of output voltage regulation.

The maximum collector voltage is 30V, and the maximum collector current is 5 mA.


Refer to the implementation circuit and table of logics at page 66 for recommendations for driving logic level circuits with open collector signal outputs.

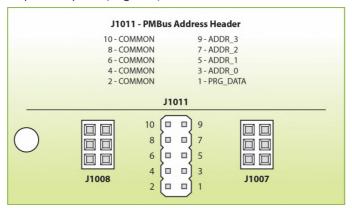
Rev. 10.29.25 #1.2

Open Collector Driving Common Logic Levels for System Signals

Each System Signals (Global Power Good, FAN FAIL, AC FAIL and OTP) is an Open Collector driver to Common with a 390 ohm resistor in series with the collector for current limiting. These outputs can safely sink up to 12mA and have a breakdown voltage of greater than 25V. Pull up resistors should be chosen to keep the sink current under 12mA. The table below shows some resistor combinations translating the Open Collector output into a voltage level suitable for various logic types with using either the 12V or 5V Auxiliary voltage. Other voltages can be used to bias these circuits with adjustments taking into account the 12mA max sink current and the 390 ohm resistance in series with the collector.

Table of Logics

Auxiliary Voltage	Logic Voltage	R1	R2	V_{high}	V_{low}	I _{sink max}
12V	12 Volt Logic	12 K ohm	Open	12 V	0.4 V	12 mA
12V	5 Volt Logic	10 K ohm	7 Kohm	4.9 V	0.45 V	12 mA
12V	3.3 Volt Logic	10 K ohm	3.9 Kohm	3.2 V	0.4 V	12 mA
5V	5 Volt Logic	5 K ohm	Open	5 V	0.36 V	12 mA
5V	3.3 Volt Logic	5 K ohm	10 Kohm	3.3 V	0.36 V	12 mA



PRG_DATA - Reversing CoolMod Inhibit/Enable Logic - (Pin 1 of J1011)

The logic of the module Inhibit/Enable signals can be reversed by shorting pins 1 and 2 of J1011, on CoolX600 CoolPacs with a jumper, and applying a logic low signal between pin 3 (control) and pin 1 (common) of the J1005 system signal connector.

The recommended jumper for the J1011 and J13 connectors is a Harwin M22-1900005 2mm Jumper Socket.

When this signal is applied to the CoolX unit, the default condition of all modules is disabled. You can enable modules by applying a logic low signal to the enable input on the output signal connector (J1001-J1004), between pin 4 (positive) and pin 1 or pin 3 (negative).

	J1011 Pin 1 PRG_DATA	J1005 Pin 3 Control Signal	J100x Pin 4 CoolMod Enable Signal	CoolMod Status
		0	0	Enabled
Reverse Polarity	Pin 1 to 2 short	0	1 or open	Disabled
Reverse Folding		1 or open	0	Disabled
		1 or open	1 or open	Disabled
		0	0	Disabled
Normal Polarity	Pin 1 to 2 open	0	1 or open	Disabled
		1 or open	0	Disabled
		1 or open	1 or open	Enabled

Module Operation 7.4

The CoolX has been designed to allow maximum flexibility in meeting the unique requirements of system designers. The inherent flexibility resulting from modular concepts allows users to configure solutions with multiple outputs that can be individually controlled.

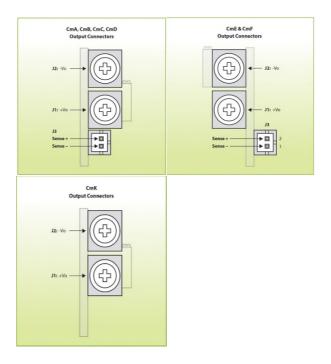
There are 13 CoolMods which provide discrete isolated DC outputs according to the CoolMod Summary Specifications table below.

Model	V _o (V)	V _{O,adjust}	OVP of Vset	OVP ¹	I _{O, max} (A)	ОСР	P _{O,max} (W)
CmA	5.00	2.5 to 6.0	103 to 125%	125 to 160%	21.0	105 to 130%	105
CmB	12.00	6.0 to 15.0 ²	103 to 125%	113 to 140%	15.0	105 to 130%	180
CmC	24.00	15.0 to 28.0	103 to 125%	114 to 132%	8.3	105 to 130%	200
CmD	48.00	28.0 to 58.0	103 to 125%	107 to 120%	4.2	105 to 130%	200
CmE	24.00	24.0 to 25.2	102 to 119%	107 to 129%	25.0	105 to 130%	550
CmF	48.00	48.0 to 50.4	102 to 119%	109 to 123%	12.5	105 to 130%	550
CmG	24.00 24.00	3.0 to 30.0 3.0 to 30.0	NA	110 to 130%	3.0 3.0	180 to 330%	120
CmH	5.00 24.00	3.0 to 6.0 3.0 to 30.0	NA	115 to 125% 110 to 130%	6.0 3.0	166 to 250% 180 to 330%	100
CmA-W01	5.00	1.0 to 6.0	103 to 125%	113 to 160%	21.0	105 to 130%	105
CmB-W01	12.00	1.0 to 15.0	103 to 125%	113 to 140%	15.0	105 to 130%	180
CmC-W01	24.00	2.0 to 28.0	103 to 125%	114 to 132%	8.3	105 to 130%	200
CmD-W01	48.00	3.0 to 58.0	103 to 125%	107 to 115%	4.2	105 to 130%	200
CmK	200.00	175.0 to 205.0	105 to 110%	112 to 122%	0.66	105 to 130%	132

Note 1 - Specified as a percentage of maximum voltage

Note 2 - Full Dynamic Specifications may not be met at full load when output voltage is trimmed above 13 V.

Note 3 - Total max power of both channels


7.5 Module Output/Signal

CmA to CmF and CmK Modules

J1 &J2 - Module Output Connector

J1 - +Vo - +Main Output

J2 - -Vo - Main Output Return

CmA to CmF Modules

J3 - Module Sense Connector

- 1 Sense - Module Remote Sense Return
- 2 Sense + Module Remote Sense

Remote sensing can be used to compensate for voltage drops in output leads. Remote sensing is available on Modules via the J3 Sense Connector. There is no remote sense on the CmG, CmH, CmK modules

Remote sensing will be implemented by connecting the Positive Sense pin (J3 pin2) to the positive side of the remote load and the Negative Sense pin (J3 pin1) to the negative side of the remote load. The maximum line drop, which can be compensated for by remote sensing is 0.5V, subject to not exceeding the maximum module voltage at the output terminals. Observe the following precautions when remote sensing:

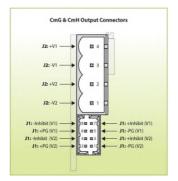
- Use separate twisted pairs for power and sense wiring.
- · Route the sensing leads to prevent pick up, which may appear as ripple on the output.
- · Never disconnect the output power rail with the sensing still connected to the load.
- · When using Remote Sense, output voltage should be set on the Sense Pins, not the Output Terminals

In certain applications where there is a high dynamic impedance along the power leads to the sensing point, remote sensing may cause system instability. This system problem can be overcome by using resistors in the sense leads (Positive sense lead: R1 = 10ohm, Negative sense lead: R2=10ohm), together with local AC sensing, by using 22uF capacitors between the remote sense pins and the output terminals.

The resistance of the power cables must be so that the voltage drop across the cables is less than (Rcable) 0.5V (to ensure remote sensing operates correctly).

$$R_{cable} < \frac{0.5}{I_{out}}$$

E.g. for a CmA, 5V/21A, the Rcable must be less than 23.8mohm.

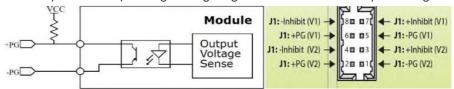


7.5 Module Output/Signal

CmG/CmH Modules

J2 - Dual Output Module Output Connector

- 1 - V2 Output 2 Return
- 2 +V2 Output 2
- 3 -V1 Output 1 Return
- 4 +V1 Output 1



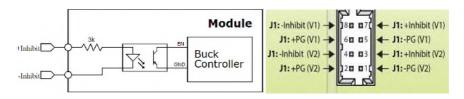
J1 - Dual Output Module Signal Connector

+/- PG - Dual Output Module Power Good Signal - (Pins 1,2,5,6 of J1)

The Output Signal Connector (J1001-J1004) does not indicate Power Good status of the CmG or CmH modules, each output has a Power Good signal which indicates if there is a voltage on the output pins.

Note: The dual output module power good signal good status does not impact the global power

The Power Good signal is the unbiased open collector of an optocoupler that is available on the Module Signal Connector J1 via the collector on +PG and the emitter on -PG.

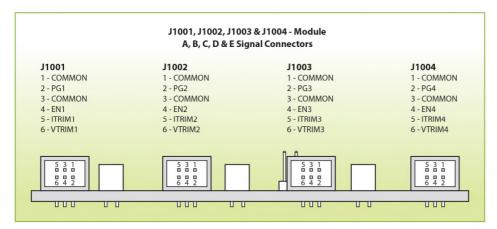

When there is a voltage present on the output pins of each output the transistor of the optocoupler is turned ON. If the output drops out of regulation the transistor turns OFF.

To monitor the Power Good of a channel, +PG should be pulled up to a reference voltage with a pull up resistor. The pull up resistor should be chosen to limit collector current to 0.5mA or less. For example, if the reference voltage is 5V, the pull up resistor should be 10K ohm or higher.

+/- Inhibit - Dual Output Module Enable/Inhibit - (Pins 3,4,7,8 of J1)

Each individual output voltage of the Dual Module will be enabled/inhibited by means of a signal applied to the Inhibit pins on the module signal connector J1. When the Inhibit pins are floating, or when the +Inhibit pin is tied to the -Inhibit pin, the channel is enabled.

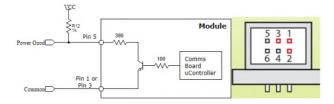
Applying a signal voltage to the Inhibit pins will disable the channel. The specifications of this signal are shown in the table below.


Model	Inhibit Signal Voltage	Inhibit Signal Current
Maximum	12 V	4.0 mA
Minimum	3 V	0.2 mA

advancedenergy.com

J100x - Single Module DC Output Signal Connector

The CoolX600 Single Module Output Signals are available on the J100x Connector. (x = 1 to 4)



COMMON - (Pin 1, Pin 3 of J100x)

Ground reference of the system signal, this is connected to V- of the auxiliary output.

PGx - Module Power Good Signal (Standard, Wide -Trim and High Power modules) - (Pin 2 of J100x)

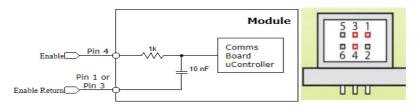
Each module has a Power Good Signal that is the output of an internal comparator which monitors the output voltage and determines whether this voltage is within normal operation limits. The PG signal is an unbiased open collector that is available on the Output Signal Connector (J100x) via the collector on Pin 2 and the emitter on Pin 1 or 3 (Common).

When the output voltage is within 10% of $V_{O, set}$ the transistor is turned ON. If the output drops out of regulation the transistor turns OFF. This can be used for power sequencing in many applications (enabling another CoolMod output when the first output is within regulation, as well as driving external circuitry.

The maximum collector voltage is 5V, and the maximum collector current is 12mA.

The dual module power good signal does not impact the global power good status.

Refer to the implementation circuit and table of logics at page 67 for recommendations for driving Logic Level circuits with open collector signal outputs.



ENx - Module Enable/Inhibit - (Pin 4 of J100x)

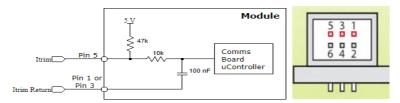
Each module will be enabled/inhibited by means of a logic level signal applied to the enable input on Output Signal Connector J1001-J1004, Pin 4 (Positive), Pin 1 or 3 (Negative). The input has a 1K ohm series resistor and a 100nF filtering capacitor to filter noise on this signal. The input voltage must be limited to no greater than 5 volts.

When there is no connection, Pin 4 is HIGH (5V) and the module is enabled. Pulling Pin 4 to Common will disable the module.

Disabling CmG-CmH modules in this way will disable both outputs.

The logic of the module Inhibit/Enable signals will be reversed if pins 1 and 2 of J1011 (which is located in the center of the Comms board between slot 2 and slot 3) are shorted with a jumper, and a logic low signal is applied between the CONTROL pin of J11 (Pin 3) and Common (Pin 1) - where J11 for the CoolX600. Now when Pin 4 is HIGH, the module is disabled, and pulling Pin 4 to Common will enable the module. For details, please refer to page 67.

The recommended jumper for the J1011/J13 connector is a Harwin M22-1900005 2mm Jumper Socket.

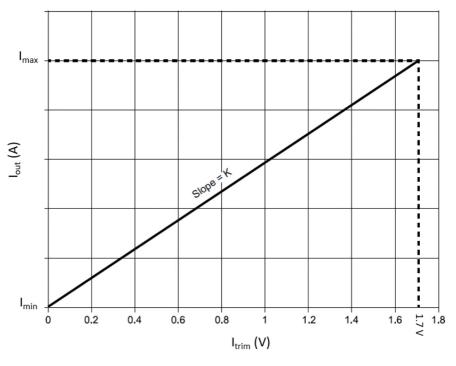

ITRIMx - Module Set Current Limit - (Pin 5 of J100x)

The current limit of the CoolMod can be set by applying a control voltage ITRIM across the Output Signal Connector pins ITRIM (Pin 5) and Common (Pin 1). The ITRIM voltage required for the users desired current limit can be calculated using the formula and table at page 75.

Note: Current limit adjustment is not available on CmE-CmH CoolMods.

Remote Current Limit Setting (Using External Voltage)

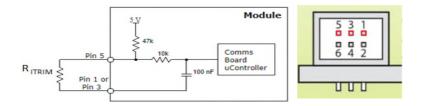
Available On: Standard Modules (CmA-CmD), Wide-Trim Modules (CmA-W01 to CmD-W01), High Voltage Module (CmK).



The current limit of the CoolMod can bet set by applying a control voltage I_{TRIM} across the Output Signal Connector (J100x) pins ITRIM (Pin 5) and Common (Pin 1 or Pin 3). The I_{TRIM} voltage required for the users desired current limit with the module can be calculated using the following formula.

$$I_{trim} = \frac{I_{out}}{K}$$

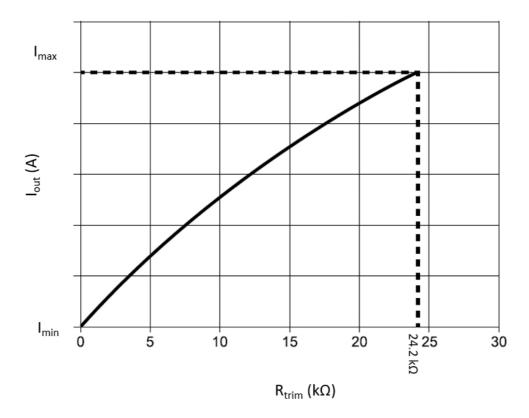
Module	K
CmA	14.79
CmB	10.65
CmC	5.75
CmD	2.89
CmA-W01	14.79
CmB-W01	10.65
CmC-W01	5.75
CmD-W01	2.89
CmK	0.46



Itrim versus lout

Remote Current Limit Setting (Using External Resistance)

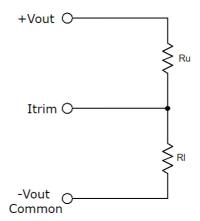
Available On: Standard Modules (CmA-CmD), Wide-Trim Modules (CmA-W01 to CmD-W01), High Voltage Module (CmK).



The current limit of the CoolMod can bet set by placing a resistor R_{ITRIM} across the Output Signal Connector (J100x) pins ITRIM (Pin 5) and Common (Pin 1 or Pin3). The R_{ITRIM} resistance required for the users desired output current limit can be calculated using the following formula along with the same table used to calculate ITRIM.

$$R_{ITRIM} = \frac{47000 \times I_{out}}{5K - I_{out}}$$

Module	K
CmA	14.79
CmB	10.65
CmC	5.75
CmD	2.89
CmA-W01	14.79
CmB-W01	10.65
CmC-W01	5.75
CmD-W01	2.89
CmK	0.46


Rtrim versus lout

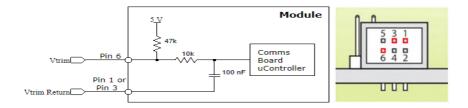
Foldback Current Limit Programming (Standard and Wide-Trim Modules)

Foldback Current Limit can also be achieved with the CoolX but it requires the Common Pin of the Output Connector to be tied to the -V Output Connector of the module (remember that the Common Pin is also -Vo of the Auxiliary Voltage). Foldback Current Limiting can then be implemented by placing a resistor Ru across +Vout and ITRIM, and a Resistor RI across ITRIM and -Vout/Common.

This capability is not available on dual modules or bulk modules.

$$R_l = \frac{23500(I_{out})}{5K - I_{out}}$$

$$R_u = \frac{\left(47000(R_l)\right)\left(V_{out} - \frac{I_{out}}{K}\right)}{R_l(I_{trim}) - 5(R_l) + 47000\left(\frac{I_{out}}{K}\right)}$$

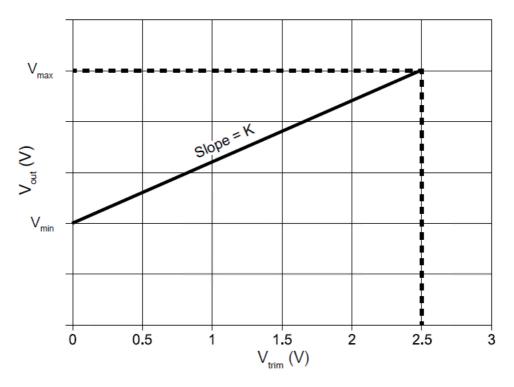


VTRIMx - CoolMod Voltage Adjustment - (Pin 6 of J100x)

The CoolX series CoolMods boast very wide output voltage adjustment ranges. Voltage setting, and dynamic voltage adjustment can be achieved in three ways; by adjusting the on board potentiometer, using the VTRIM pin of the Output Signal Connector (J1001 to J1004) or with PMBus[™] commands applied to the System Signal Connector (J1005).

Remote Voltage Setting (Using External Voltage)

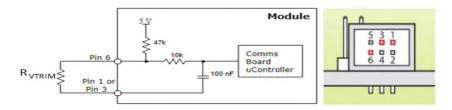
Available On: Standard Modules (CmA-CmD), High Power Modules (CmE-CmF), Wide-Trim Modules (CmA-W01 to CmD-W01), High Voltage Module (CmK).



The output voltage of the module can be set by applying a control voltage VTRIM across the Output Signal Connector (J100x) pins VTRIM (Pin 6) and Common (Pin 1 or Pin 3). The VTRIM voltage required for the users desired output voltage can be calculated using the following formula

$$V_{trim} = \frac{V_{out} - F}{K}$$

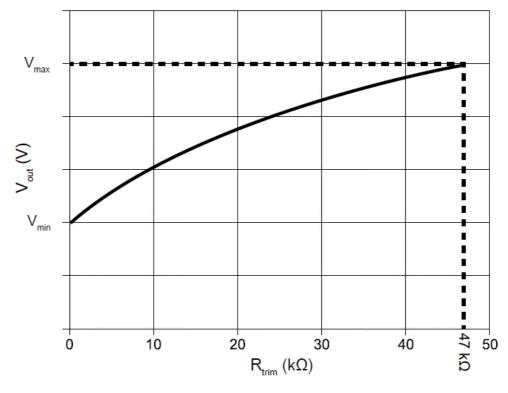
Module	K	F	
CmA	1.59	2.43	
CmB	3.84	5.85	
CmC	6.30	13.82	
CmD	13.20	26.13	
CmE	1.19	22.45	
CmF	0.28	43.06	
CmA-W01	3.23	-1.61	
CmB-W01	7.84	-3.9	
CmC-W01	12.77	-2.17	
CmD-W01	26.25	-6.42	
CmK	20.47	154	



Vtrim versus Vout

Remote Voltage Setting (Using External Resistance)

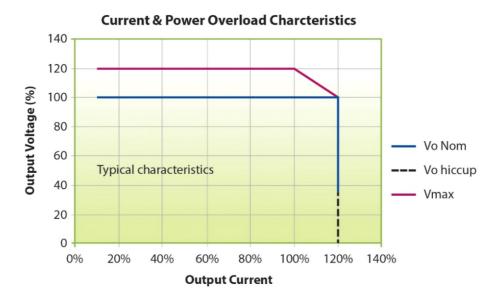
Available On: Standard Modules (CmA-CmD), High Power Modules (CmE-CmF), Wide-Trim Modules (CmA-W01 to CmD-W01), High Voltage Module (CmK).



The output voltage of the module can be set by placing a resistor R_{VTRIM} across the Output Signal Connector pins VTRIM (Pin 6) and Common (Pin 1 or Pin 3). The R_{VTRIM} resistance required for the users desired output voltage can be calculated using the following formula.

$$R_{VTRIM} = \frac{47000(V_{out} - F)}{F + 5K - V_{out}}$$

Module	K	F	
CmA	1.59	2.43	
CmB	3.84	5.85	
CmC	6.30	13.82	
CmD	13.20	26.13	
CmE	1.19	22.45	
CmF	0.28	43.06	
CmA-W01	3.23	-1.61	
CmB-W01	7.84	-3.9	
CmC-W01	12.77	-2.17	
CmD-W01	26.25	-6.42	
CmK	20.47	154	



7.6 Power Limit

Each CoolMod has a number of levels of protection in order to ensure that CoolX is not damaged if used in overload conditions. Refer to Current and Overload Characteristics Graph.

When V_{O,set} is less than or equal to V_{O,nom}, current limit is employed at the current limit set point.

For Standard and Wide-Trim modules, if $V_{O,set}$ is greater than $V_{O,nom,}$ an intelligent power limit method is employed to ensure that the CoolMod does not exceed its power rating.

E.g. CmC is adjustable between 15V and 28V, IO max is 8.33A, and Power rating is 200W.

- At 24V the CoolMod can deliver 8.33A continuously, i.e. 300W.
- At 28V, the CoolMod can still deliver 200W, however this equates to 7.14A continuous current.

CmE-CmH modules do not have a power limit and rely on current limit only.

SECTION 8 INSTALLATION

8.1 **Installation Considerations**

The CoolX series models may be mounted on any of its four surfaces using standard M4 screws. The chassis comes with four mounting points on the base and two mounting points on each side. Maximum allowable torque for M3 screws is 0.63Nm, and maximum allowable torque for M4 screws is 1.48Nm, and maximum allowable penetration depth is 2mm for both M3 and M4 screws. DIN-rail mounting is also possible using the Excelsys DIN-rail mounting bracket.

Avoid excessive bending of output power cables after they are connected to the CoolMods. For high current outputs, use cable-ties to support heavy cables and minimize mechanical stress on output terminals. Be careful not to short-out to neighboring output terminals. The maximum torque allowed on output connectors is 0.74 Nm.

The CoolPac should be supplied by a power source of the type indicated on its label, and only used with a suitably rated mains cord. Double pole / neutral fusing is used in the CoolX platform. If the installation is not completely disconnected from power, parts may remain live even if one of the two mains fuses has blown.

When adding or removing CoolMods from the CoolPac, care must be taken to handle the CoolMods by the output terminals only, ensuring that all the other surface mount components are not unduly damaged.

Parts of the unit will become hot during operation, allow time to cool before handling. After disconnecting the AC source, allow 4 minutes before disassembly to allow capacitors within the unit to discharge.

SECTION 8 INSTALLATION CON'T

8.2 Configuration Considerations

- Do not unplug CoolMods while input power is applied to the CoolPac. The CoolMods are not designed for hot-plug insertion.
- Always ensure that input and output screw terminals are properly torqued before applying power to the CoolX.
- Positive and negative power cables should be arranged as a twisted pair to minimize inductance.
- Wait 4 minutes after shutting off power before inserting or removing CoolMods.
- CoolX assemblies do not have user serviceable components. They must be returned to the factory for
 repairs. Contact Customer Service for an RMA number before returning the unit. Do not attempt to repair or
 modify the power supply in any manner other than the exchange of CoolMods as described in this
 Designers' Manual.
- Use proper size wires to avoid overheating and excessive voltage drop.
- Take appropriate precautions when touching the CoolX after it has been operating for a period of time. Due to the excellent conduction cooling methods to the chassis, the chassis will remain hot for some time after power has been removed.
- If a CmE or CmF module is to be configured in the CoolX600, it must be used in Slot 4. This leaves Slot 1 free for other modules.

9.1 Series Connection of CoolMod Outputs (Standard and Wide-Trim Modules)

It is possible to connect modules in series to increase output voltage. Standard, Wide-Trim and High Power module outputs are rated SELV (Safety Extra Low Voltage), that is, that output voltages are guaranteed to be less than 60V. If putting outputs in series this 60V limit can be exceeded and so appropriate precautions should be taken. It is good practice to stack modules with similar output current limits, so that in case of short circuit the outputs collapse together.

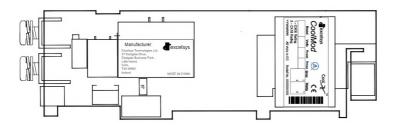
If remote sensing is required, the positive remote sense of the highest module and negative remote sense of the lowest module should be connected to the load. Special series connection links can be fitted to CoolMods modules to reduce wiring complexity. These Series Links can be fitted by the installer or added at the factory during configuration.

A maximum of three CmK modules can be connected in series.

CmE and CmF Modules should not be connected in series. CmF and CmG outputs can be connected in series to each other, but there are no dedicated links for this, and this should be done at a system level.

Modules can be series connected across CoolPacs units in the CoolX600, but no links exist for this, so it should be done at a system level.

9.2 Parallel Connection for CoolMods (Standard, Wide-Trim Modules and High Voltage Modules)


To achieve increased current capacity, simply parallel outputs using the standard parallel links. Active droop current sharing ensures that current hogging is not possible.

Note: There is a 10% derating imposed on parallel modules.

A maximum of three CmK modules may be connected in parallel.

To Parallel Connect CoolMods (Standard and Wide-Trim Modules)

Turn on current sharing by adding a jumper on J4 Connector

Jumper: Harwin - M22-1900005, 2 x 1 2.00 mm Pitch

- Connect Negative Parallel Busbar
- Adjust the output voltage of the first CoolMod to the required voltage
- Adjust the voltages of other CoolMods to be within the Parallel Voltage Tolerance (see below) of the first CoolMod output voltage
- Connect Positive Parallel Busbar
- · If remote sensing is used in the application, connect all Sense lines to the low side of the load and connect all + Sense lines to the high side of the load

Module	Parallel Voltage Tolerance	
CmA	±10 mV	
CmB	±10 mV	
CmC	±20 mV	
CmD	±50 mV	
CmA-W01	±20 mV	
CmB-W01	±30 mV	
CmC-W01	±40 mV	
CmD-W01	±100 mV	
CmK	±40 mV	

Special parallel connection links can be fitted to CoolMod modules to reduce wiring complexity. These Parallel Links can be fitted by the installer or added at the factory during configuration.

Note: CmE, CmF, CmG and CmH module outputs should not be paralleled.

Since all CoolMod signals are isolated from the CoolMod outputs, when CoolMods are connected in series or parallel, all CoolMod analog control functions (VTRIM, ITRIM, Enable/Inhibit) can be implemented by paralleling the appropriate signal pins of each CoolMod and providing a single control signal, i.e. connect all the VTRIM pins together and control VTRIM using a single control voltage. This can also be implemented using the PMBusTM interface.

9.3 CoolMod Start-Up and Shutdown

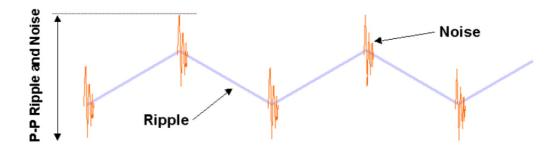
CoolMods are designed so that when input power is applied, all outputs rise to their set point voltage simultaneously. Likewise, when input power is removed all outputs commence to turn off simultaneously. Outputs can be sequenced using the enable function in order to allow controlled start up if required.

Turn-On Delays are as follows:

From AC 1000ms max
From Global Enable (CONTROL) 100ms max
From CoolMod Enable 100ms max

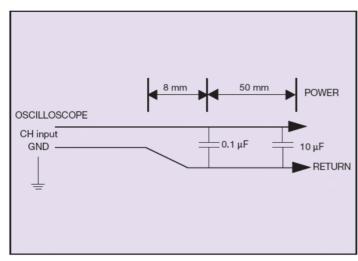
Power Good output signals from each module can be used to drive CoolMod Enable signals for sequenced outputs.

9.4 Over Voltage Protection (OVP)


Standard, Wide-Trim and High Power modules have two levels of over-voltage protection (tracking and fixed), while the Dual Modules have fixed over-voltage protection only.

The tracking OVP level is relative to the set output voltage and will turn off the CoolMod converter if the actual output voltage is between 102%-125% of the setting output voltage. When the fault condition has been removed the module will auto-recover.

The fixed OVP level is fixed relative to Vmax and will activate between 107%-160% of the maximum output voltage. The fixed OVP will turn off all outputs of the CoolX600 and, like the tracking OVP, will hiccup all outputs until the fault condition is removed.


9.5 Ripple and Noise Measurement

As with all switched mode power supplies, it is important to ensure that the correct method is used to measure ripple & noise. Care should be taken to ensure that a loop antenna is not formed by the tip and ground lead of the oscilloscope probe as this would lead to erroneous readings consisting mainly of pickup from remnant radiation in the vicinity of the output connectors. Advanced Energy recommends the use of an x1 probe with the ground sheath of the probe tip used for ground connection. In some applications, further erroneous readings may result from Common Mode currents. These can be reduced by looping a few turns of the scope lead through a suitable high permeability ferrite ring. As most loads powered by a power supply will have at least small values of differential capacitance located near the load, We also recommends the use of small value of capacitance (approx.. 1uF) positioned at the point of measurement.

For further information refer to Application Note AN1105: Ripple and Noise for additional details on how to measure and reduce output ripple and noise.

The setup outlined in the diagram below has been used for output voltage ripple and noise measurements on the CoolX600 series. When measuring output ripple and noise, a scope jack in parallel with a 0.1uF ceramic chip capacitor, and a 10uF tantalum capacitor will be used. Oscilloscope can be set to 20MHz bandwidth for this measurement.

Minimizing System Noise

There are a number of causes of poor system noise performance. Some of the more common causes are listed below.

- Insufficient de-coupling on the PCB or load.
- Faulty wiring connection or poor cable terminations.
- Poor system earthing, system level grounding and shielding issues

There are some simple steps to eliminate, reduce or identify the causes of high frequency noise;

- Is the noise conducted or radiated? If changing the position of the power supply or screening improves performance, the noise is likely to be radiated. See Section 16: EMC Characteristics.
- Twist all pairs of power and sense cables separately.
- Ground connections (zero Volt) should be made with the shortest possible wiring via a capacitor to the nearest point on the chassis.

SECTION 10 Record of Revision and Changes

Issue	Date	Description	Originators
1.0	09.22.2022	First Issue	V. Guo
1.1	01.07.2025	Add Itrim, Vtrim graph	J.Zhang
1.2	10.29.2025	Correct OVP contents	J.Zhang

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE | TRUST

For international contact information, visit advancedenergy.com.

powersales@aei.com(Sales Support) productsupport.ep@aei.com(Technical Support) +1 888 412 7832 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2025 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.